Module: Rumale::Base::Regressor
- Included in:
- Ensemble::AdaBoostRegressor, Ensemble::GradientBoostingRegressor, Ensemble::RandomForestRegressor, LinearModel::Lasso, LinearModel::LinearRegression, LinearModel::Ridge, LinearModel::SVR, NearestNeighbors::KNeighborsRegressor, PolynomialModel::FactorizationMachineRegressor, Tree::DecisionTreeRegressor, Tree::GradientTreeRegressor
- Defined in:
- lib/rumale/base/regressor.rb
Overview
Module for all regressors in Rumale.
Instance Method Summary collapse
-
#fit ⇒ Object
An abstract method for fitting a model.
-
#predict ⇒ Object
An abstract method for predicting labels.
-
#score(x, y) ⇒ Float
Calculate the coefficient of determination for the given testing data.
Instance Method Details
#fit ⇒ Object
An abstract method for fitting a model.
13 14 15 |
# File 'lib/rumale/base/regressor.rb', line 13 def fit raise NotImplementedError, "#{__method__} has to be implemented in #{self.class}." end |
#predict ⇒ Object
An abstract method for predicting labels.
18 19 20 |
# File 'lib/rumale/base/regressor.rb', line 18 def predict raise NotImplementedError, "#{__method__} has to be implemented in #{self.class}." end |
#score(x, y) ⇒ Float
Calculate the coefficient of determination for the given testing data.
27 28 29 30 31 32 33 |
# File 'lib/rumale/base/regressor.rb', line 27 def score(x, y) check_sample_array(x) check_tvalue_array(y) check_sample_tvalue_size(x, y) evaluator = Rumale::EvaluationMeasure::R2Score.new evaluator.score(y, predict(x)) end |