Class: Rumale::Ensemble::RandomForestClassifier
- Inherits:
-
Object
- Object
- Rumale::Ensemble::RandomForestClassifier
- Includes:
- Base::BaseEstimator, Base::Classifier
- Defined in:
- lib/rumale/ensemble/random_forest_classifier.rb
Overview
RandomForestClassifier is a class that implements random forest for classification.
Direct Known Subclasses
Instance Attribute Summary collapse
-
#classes ⇒ Numo::Int32
readonly
Return the class labels.
-
#estimators ⇒ Array<DecisionTreeClassifier>
readonly
Return the set of estimators.
-
#feature_importances ⇒ Numo::DFloat
readonly
Return the importance for each feature.
-
#rng ⇒ Random
readonly
Return the random generator for random selection of feature index.
Attributes included from Base::BaseEstimator
Instance Method Summary collapse
-
#apply(x) ⇒ Numo::Int32
Return the index of the leaf that each sample reached.
-
#fit(x, y) ⇒ RandomForestClassifier
Fit the model with given training data.
-
#initialize(n_estimators: 10, criterion: 'gini', max_depth: nil, max_leaf_nodes: nil, min_samples_leaf: 1, max_features: nil, random_seed: nil) ⇒ RandomForestClassifier
constructor
Create a new classifier with random forest.
-
#marshal_dump ⇒ Hash
Dump marshal data.
-
#marshal_load(obj) ⇒ nil
Load marshal data.
-
#predict(x) ⇒ Numo::Int32
Predict class labels for samples.
-
#predict_proba(x) ⇒ Numo::DFloat
Predict probability for samples.
Methods included from Base::Classifier
Constructor Details
#initialize(n_estimators: 10, criterion: 'gini', max_depth: nil, max_leaf_nodes: nil, min_samples_leaf: 1, max_features: nil, random_seed: nil) ⇒ RandomForestClassifier
Create a new classifier with random forest.
53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 |
# File 'lib/rumale/ensemble/random_forest_classifier.rb', line 53 def initialize(n_estimators: 10, criterion: 'gini', max_depth: nil, max_leaf_nodes: nil, min_samples_leaf: 1, max_features: nil, random_seed: nil) check_params_type_or_nil(Integer, max_depth: max_depth, max_leaf_nodes: max_leaf_nodes, max_features: max_features, random_seed: random_seed) check_params_integer(n_estimators: n_estimators, min_samples_leaf: min_samples_leaf) check_params_string(criterion: criterion) check_params_positive(n_estimators: n_estimators, max_depth: max_depth, max_leaf_nodes: max_leaf_nodes, min_samples_leaf: min_samples_leaf, max_features: max_features) @params = {} @params[:n_estimators] = n_estimators @params[:criterion] = criterion @params[:max_depth] = max_depth @params[:max_leaf_nodes] = max_leaf_nodes @params[:min_samples_leaf] = min_samples_leaf @params[:max_features] = max_features @params[:random_seed] = random_seed @params[:random_seed] ||= srand @estimators = nil @classes = nil @feature_importances = nil @rng = Random.new(@params[:random_seed]) end |
Instance Attribute Details
#classes ⇒ Numo::Int32 (readonly)
Return the class labels.
30 31 32 |
# File 'lib/rumale/ensemble/random_forest_classifier.rb', line 30 def classes @classes end |
#estimators ⇒ Array<DecisionTreeClassifier> (readonly)
Return the set of estimators.
26 27 28 |
# File 'lib/rumale/ensemble/random_forest_classifier.rb', line 26 def estimators @estimators end |
#feature_importances ⇒ Numo::DFloat (readonly)
Return the importance for each feature.
34 35 36 |
# File 'lib/rumale/ensemble/random_forest_classifier.rb', line 34 def feature_importances @feature_importances end |
#rng ⇒ Random (readonly)
Return the random generator for random selection of feature index.
38 39 40 |
# File 'lib/rumale/ensemble/random_forest_classifier.rb', line 38 def rng @rng end |
Instance Method Details
#apply(x) ⇒ Numo::Int32
Return the index of the leaf that each sample reached.
153 154 155 156 |
# File 'lib/rumale/ensemble/random_forest_classifier.rb', line 153 def apply(x) check_sample_array(x) Numo::Int32[*Array.new(@params[:n_estimators]) { |n| @estimators[n].apply(x) }].transpose end |
#fit(x, y) ⇒ RandomForestClassifier
Fit the model with given training data.
83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 |
# File 'lib/rumale/ensemble/random_forest_classifier.rb', line 83 def fit(x, y) check_sample_array(x) check_label_array(y) check_sample_label_size(x, y) # Initialize some variables. n_samples, n_features = x.shape @params[:max_features] = Math.sqrt(n_features).to_i unless @params[:max_features].is_a?(Integer) @params[:max_features] = [[1, @params[:max_features]].max, n_features].min @classes = Numo::Int32.asarray(y.to_a.uniq.sort) @feature_importances = Numo::DFloat.zeros(n_features) # Construct forest. @estimators = Array.new(@params[:n_estimators]) do tree = Tree::DecisionTreeClassifier.new( criterion: @params[:criterion], max_depth: @params[:max_depth], max_leaf_nodes: @params[:max_leaf_nodes], min_samples_leaf: @params[:min_samples_leaf], max_features: @params[:max_features], random_seed: @rng.rand(Rumale::Values.int_max) ) bootstrap_ids = Array.new(n_samples) { @rng.rand(0...n_samples) } tree.fit(x[bootstrap_ids, true], y[bootstrap_ids]) @feature_importances += tree.feature_importances tree end @feature_importances /= @feature_importances.sum self end |
#marshal_dump ⇒ Hash
Dump marshal data.
160 161 162 163 164 165 166 |
# File 'lib/rumale/ensemble/random_forest_classifier.rb', line 160 def marshal_dump { params: @params, estimators: @estimators, classes: @classes, feature_importances: @feature_importances, rng: @rng } end |
#marshal_load(obj) ⇒ nil
Load marshal data.
170 171 172 173 174 175 176 177 |
# File 'lib/rumale/ensemble/random_forest_classifier.rb', line 170 def marshal_load(obj) @params = obj[:params] @estimators = obj[:estimators] @classes = obj[:classes] @feature_importances = obj[:feature_importances] @rng = obj[:rng] nil end |
#predict(x) ⇒ Numo::Int32
Predict class labels for samples.
113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 |
# File 'lib/rumale/ensemble/random_forest_classifier.rb', line 113 def predict(x) check_sample_array(x) n_samples, = x.shape n_classes = @classes.size classes_arr = @classes.to_a ballot_box = Numo::DFloat.zeros(n_samples, n_classes) @estimators.each do |tree| predicted = tree.predict(x) n_samples.times do |n| class_id = classes_arr.index(predicted[n]) ballot_box[n, class_id] += 1.0 unless class_id.nil? end end Numo::Int32[*Array.new(n_samples) { |n| @classes[ballot_box[n, true].max_index] }] end |
#predict_proba(x) ⇒ Numo::DFloat
Predict probability for samples.
133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 |
# File 'lib/rumale/ensemble/random_forest_classifier.rb', line 133 def predict_proba(x) check_sample_array(x) n_samples, = x.shape n_classes = @classes.size classes_arr = @classes.to_a ballot_box = Numo::DFloat.zeros(n_samples, n_classes) @estimators.each do |tree| probs = tree.predict_proba(x) tree.classes.size.times do |n| class_id = classes_arr.index(tree.classes[n]) ballot_box[true, class_id] += probs[true, n] unless class_id.nil? end end (ballot_box.transpose / ballot_box.sum(axis: 1)).transpose end |