Class: Rumale::LinearModel::LogisticRegression
- Inherits:
-
BaseLinearModel
- Object
- BaseLinearModel
- Rumale::LinearModel::LogisticRegression
- Includes:
- Base::Classifier
- Defined in:
- lib/rumale/linear_model/logistic_regression.rb
Overview
LogisticRegression is a class that implements Logistic Regression with mini-batch stochastic gradient descent optimization. For multiclass classification problem, it uses one-vs-the-rest strategy.
Reference
-
Shalev-Shwartz, Y. Singer, N. Srebro, and A. Cotter, “Pegasos: Primal Estimated sub-GrAdient SOlver for SVM,” Mathematical Programming, vol. 127 (1), pp. 3–30, 2011.
-
Instance Attribute Summary collapse
-
#bias_term ⇒ Numo::DFloat
readonly
Return the bias term (a.k.a. intercept) for Logistic Regression.
-
#classes ⇒ Numo::Int32
readonly
Return the class labels.
-
#rng ⇒ Random
readonly
Return the random generator for performing random sampling.
-
#weight_vec ⇒ Numo::DFloat
readonly
Return the weight vector for Logistic Regression.
Attributes included from Base::BaseEstimator
Instance Method Summary collapse
-
#decision_function(x) ⇒ Numo::DFloat
Calculate confidence scores for samples.
-
#fit(x, y) ⇒ LogisticRegression
Fit the model with given training data.
-
#initialize(reg_param: 1.0, fit_bias: false, bias_scale: 1.0, max_iter: 1000, batch_size: 20, optimizer: nil, random_seed: nil) ⇒ LogisticRegression
constructor
Create a new classifier with Logisitc Regression by the SGD optimization.
-
#marshal_dump ⇒ Hash
Dump marshal data.
-
#marshal_load(obj) ⇒ nil
Load marshal data.
-
#predict(x) ⇒ Numo::Int32
Predict class labels for samples.
-
#predict_proba(x) ⇒ Numo::DFloat
Predict probability for samples.
Methods included from Base::Classifier
Constructor Details
#initialize(reg_param: 1.0, fit_bias: false, bias_scale: 1.0, max_iter: 1000, batch_size: 20, optimizer: nil, random_seed: nil) ⇒ LogisticRegression
Create a new classifier with Logisitc Regression by the SGD optimization.
50 51 52 53 54 55 56 57 58 59 |
# File 'lib/rumale/linear_model/logistic_regression.rb', line 50 def initialize(reg_param: 1.0, fit_bias: false, bias_scale: 1.0, max_iter: 1000, batch_size: 20, optimizer: nil, random_seed: nil) check_params_float(reg_param: reg_param, bias_scale: bias_scale) check_params_integer(max_iter: max_iter, batch_size: batch_size) check_params_boolean(fit_bias: fit_bias) check_params_type_or_nil(Integer, random_seed: random_seed) check_params_positive(reg_param: reg_param, bias_scale: bias_scale, max_iter: max_iter, batch_size: batch_size) super @classes = nil end |
Instance Attribute Details
#bias_term ⇒ Numo::DFloat (readonly)
Return the bias term (a.k.a. intercept) for Logistic Regression.
29 30 31 |
# File 'lib/rumale/linear_model/logistic_regression.rb', line 29 def bias_term @bias_term end |
#classes ⇒ Numo::Int32 (readonly)
Return the class labels.
33 34 35 |
# File 'lib/rumale/linear_model/logistic_regression.rb', line 33 def classes @classes end |
#rng ⇒ Random (readonly)
Return the random generator for performing random sampling.
37 38 39 |
# File 'lib/rumale/linear_model/logistic_regression.rb', line 37 def rng @rng end |
#weight_vec ⇒ Numo::DFloat (readonly)
Return the weight vector for Logistic Regression.
25 26 27 |
# File 'lib/rumale/linear_model/logistic_regression.rb', line 25 def weight_vec @weight_vec end |
Instance Method Details
#decision_function(x) ⇒ Numo::DFloat
Calculate confidence scores for samples.
95 96 97 98 |
# File 'lib/rumale/linear_model/logistic_regression.rb', line 95 def decision_function(x) check_sample_array(x) x.dot(@weight_vec.transpose) + @bias_term end |
#fit(x, y) ⇒ LogisticRegression
Fit the model with given training data.
66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 |
# File 'lib/rumale/linear_model/logistic_regression.rb', line 66 def fit(x, y) check_sample_array(x) check_label_array(y) check_sample_label_size(x, y) @classes = Numo::Int32[*y.to_a.uniq.sort] n_classes = @classes.size n_features = x.shape[1] if n_classes > 2 @weight_vec = Numo::DFloat.zeros(n_classes, n_features) @bias_term = Numo::DFloat.zeros(n_classes) n_classes.times do |n| bin_y = Numo::Int32.cast(y.eq(@classes[n])) * 2 - 1 @weight_vec[n, true], @bias_term[n] = partial_fit(x, bin_y) end else negative_label = y.to_a.uniq.min bin_y = Numo::Int32.cast(y.ne(negative_label)) * 2 - 1 @weight_vec, @bias_term = partial_fit(x, bin_y) end self end |
#marshal_dump ⇒ Hash
Dump marshal data.
133 134 135 136 137 138 139 |
# File 'lib/rumale/linear_model/logistic_regression.rb', line 133 def marshal_dump { params: @params, weight_vec: @weight_vec, bias_term: @bias_term, classes: @classes, rng: @rng } end |
#marshal_load(obj) ⇒ nil
Load marshal data.
143 144 145 146 147 148 149 150 |
# File 'lib/rumale/linear_model/logistic_regression.rb', line 143 def marshal_load(obj) @params = obj[:params] @weight_vec = obj[:weight_vec] @bias_term = obj[:bias_term] @classes = obj[:classes] @rng = obj[:rng] nil end |
#predict(x) ⇒ Numo::Int32
Predict class labels for samples.
104 105 106 107 108 109 110 111 112 |
# File 'lib/rumale/linear_model/logistic_regression.rb', line 104 def predict(x) check_sample_array(x) return Numo::Int32.cast(predict_proba(x)[true, 1].ge(0.5)) * 2 - 1 if @classes.size <= 2 n_samples, = x.shape decision_values = predict_proba(x) Numo::Int32.asarray(Array.new(n_samples) { |n| @classes[decision_values[n, true].max_index] }) end |
#predict_proba(x) ⇒ Numo::DFloat
Predict probability for samples.
118 119 120 121 122 123 124 125 126 127 128 129 |
# File 'lib/rumale/linear_model/logistic_regression.rb', line 118 def predict_proba(x) check_sample_array(x) proba = 1.0 / (Numo::NMath.exp(-decision_function(x)) + 1.0) return (proba.transpose / proba.sum(axis: 1)).transpose if @classes.size > 2 n_samples, = x.shape probs = Numo::DFloat.zeros(n_samples, 2) probs[true, 1] = proba probs[true, 0] = 1.0 - proba probs end |