Class: Rumale::Tree::ExtraTreeClassifier

Inherits:
DecisionTreeClassifier show all
Defined in:
lib/rumale/tree/extra_tree_classifier.rb

Overview

ExtraTreeClassifier is a class that implements extra randomized tree for classification.

Reference

    1. Geurts, D. Ernst, and L. Wehenkel, “Extremely randomized trees,” Machine Learning, vol. 63 (1), pp. 3–42, 2006.

Examples:

estimator =
  Rumale::Tree::ExtraTreeClassifier.new(
    criterion: 'gini', max_depth: 3, max_leaf_nodes: 10, min_samples_leaf: 5, random_seed: 1)
estimator.fit(training_samples, traininig_labels)
results = estimator.predict(testing_samples)

Instance Attribute Summary collapse

Attributes included from Base::BaseEstimator

#params

Instance Method Summary collapse

Methods included from Base::Classifier

#score

Methods inherited from BaseDecisionTree

#apply

Constructor Details

#initialize(criterion: 'gini', max_depth: nil, max_leaf_nodes: nil, min_samples_leaf: 1, max_features: nil, random_seed: nil) ⇒ ExtraTreeClassifier

Create a new classifier with extra randomized tree algorithm.

Parameters:

  • criterion (String) (defaults to: 'gini')

    The function to evaluate spliting point. Supported criteria are ‘gini’ and ‘entropy’.

  • max_depth (Integer) (defaults to: nil)

    The maximum depth of the tree. If nil is given, extra tree grows without concern for depth.

  • max_leaf_nodes (Integer) (defaults to: nil)

    The maximum number of leaves on extra tree. If nil is given, number of leaves is not limited.

  • min_samples_leaf (Integer) (defaults to: 1)

    The minimum number of samples at a leaf node.

  • max_features (Integer) (defaults to: nil)

    The number of features to consider when searching optimal split point. If nil is given, split process considers all features.

  • random_seed (Integer) (defaults to: nil)

    The seed value using to initialize the random generator. It is used to randomly determine the order of features when deciding spliting point.



51
52
53
54
55
56
57
58
59
60
# File 'lib/rumale/tree/extra_tree_classifier.rb', line 51

def initialize(criterion: 'gini', max_depth: nil, max_leaf_nodes: nil, min_samples_leaf: 1, max_features: nil,
               random_seed: nil)
  check_params_type_or_nil(Integer, max_depth: max_depth, max_leaf_nodes: max_leaf_nodes,
                                    max_features: max_features, random_seed: random_seed)
  check_params_integer(min_samples_leaf: min_samples_leaf)
  check_params_string(criterion: criterion)
  check_params_positive(max_depth: max_depth, max_leaf_nodes: max_leaf_nodes,
                        min_samples_leaf: min_samples_leaf, max_features: max_features)
  super
end

Instance Attribute Details

#classesNumo::Int32 (readonly)

Return the class labels.

Returns:

  • (Numo::Int32)

    (size: n_classes)



21
22
23
# File 'lib/rumale/tree/extra_tree_classifier.rb', line 21

def classes
  @classes
end

#feature_importancesNumo::DFloat (readonly)

Return the importance for each feature.

Returns:

  • (Numo::DFloat)

    (size: n_features)



25
26
27
# File 'lib/rumale/tree/extra_tree_classifier.rb', line 25

def feature_importances
  @feature_importances
end

#leaf_labelsNumo::Int32 (readonly)

Return the labels assigned each leaf.

Returns:

  • (Numo::Int32)

    (size: n_leafs)



37
38
39
# File 'lib/rumale/tree/extra_tree_classifier.rb', line 37

def leaf_labels
  @leaf_labels
end

#rngRandom (readonly)

Return the random generator for random selection of feature index.

Returns:

  • (Random)


33
34
35
# File 'lib/rumale/tree/extra_tree_classifier.rb', line 33

def rng
  @rng
end

#treeNode (readonly)

Return the learned tree.

Returns:



29
30
31
# File 'lib/rumale/tree/extra_tree_classifier.rb', line 29

def tree
  @tree
end

Instance Method Details

#fit(x, y) ⇒ ExtraTreeClassifier

Fit the model with given training data.

Parameters:

  • x (Numo::DFloat)

    (shape: [n_samples, n_features]) The training data to be used for fitting the model.

  • y (Numo::Int32)

    (shape: [n_samples]) The labels to be used for fitting the model.

Returns:



67
68
69
70
71
72
# File 'lib/rumale/tree/extra_tree_classifier.rb', line 67

def fit(x, y)
  check_sample_array(x)
  check_label_array(y)
  check_sample_label_size(x, y)
  super
end

#marshal_dumpHash

Dump marshal data.

Returns:

  • (Hash)

    The marshal data about ExtraTreeClassifier



94
95
96
# File 'lib/rumale/tree/extra_tree_classifier.rb', line 94

def marshal_dump
  super
end

#marshal_load(obj) ⇒ nil

Load marshal data.

Returns:

  • (nil)


100
101
102
# File 'lib/rumale/tree/extra_tree_classifier.rb', line 100

def marshal_load(obj)
  super
end

#predict(x) ⇒ Numo::Int32

Predict class labels for samples.

Parameters:

  • x (Numo::DFloat)

    (shape: [n_samples, n_features]) The samples to predict the labels.

Returns:

  • (Numo::Int32)

    (shape: [n_samples]) Predicted class label per sample.



78
79
80
81
# File 'lib/rumale/tree/extra_tree_classifier.rb', line 78

def predict(x)
  check_sample_array(x)
  super
end

#predict_proba(x) ⇒ Numo::DFloat

Predict probability for samples.

Parameters:

  • x (Numo::DFloat)

    (shape: [n_samples, n_features]) The samples to predict the probailities.

Returns:

  • (Numo::DFloat)

    (shape: [n_samples, n_classes]) Predicted probability of each class per sample.



87
88
89
90
# File 'lib/rumale/tree/extra_tree_classifier.rb', line 87

def predict_proba(x)
  check_sample_array(x)
  super
end