Class: Rumale::KernelMachine::KernelSVC
- Inherits:
-
Object
- Object
- Rumale::KernelMachine::KernelSVC
- Includes:
- Base::BaseEstimator, Base::Classifier
- Defined in:
- lib/rumale/kernel_machine/kernel_svc.rb
Overview
KernelSVC is a class that implements (Nonlinear) Kernel Support Vector Classifier with stochastic gradient descent (SGD) optimization. For multiclass classification problem, it uses one-vs-the-rest strategy.
Reference
-
Shalev-Shwartz, Y. Singer, N. Srebro, and A. Cotter, “Pegasos: Primal Estimated sub-GrAdient SOlver for SVM,” Mathematical Programming, vol. 127 (1), pp. 3–30, 2011.
-
Instance Attribute Summary collapse
-
#classes ⇒ Numo::Int32
readonly
Return the class labels.
-
#rng ⇒ Random
readonly
Return the random generator for performing random sampling.
-
#weight_vec ⇒ Numo::DFloat
readonly
Return the weight vector for Kernel SVC.
Attributes included from Base::BaseEstimator
Instance Method Summary collapse
-
#decision_function(x) ⇒ Numo::DFloat
Calculate confidence scores for samples.
-
#fit(x, y) ⇒ KernelSVC
Fit the model with given training data.
-
#initialize(reg_param: 1.0, max_iter: 1000, probability: false, n_jobs: nil, random_seed: nil) ⇒ KernelSVC
constructor
Create a new classifier with Kernel Support Vector Machine by the SGD optimization.
-
#marshal_dump ⇒ Hash
Dump marshal data.
-
#marshal_load(obj) ⇒ nil
Load marshal data.
-
#predict(x) ⇒ Numo::Int32
Predict class labels for samples.
-
#predict_proba(x) ⇒ Numo::DFloat
Predict probability for samples.
Methods included from Base::Classifier
Constructor Details
#initialize(reg_param: 1.0, max_iter: 1000, probability: false, n_jobs: nil, random_seed: nil) ⇒ KernelSVC
Create a new classifier with Kernel Support Vector Machine by the SGD optimization.
50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 |
# File 'lib/rumale/kernel_machine/kernel_svc.rb', line 50 def initialize(reg_param: 1.0, max_iter: 1000, probability: false, n_jobs: nil, random_seed: nil) check_params_float(reg_param: reg_param) check_params_integer(max_iter: max_iter) check_params_boolean(probability: probability) check_params_type_or_nil(Integer, n_jobs: n_jobs, random_seed: random_seed) check_params_positive(reg_param: reg_param, max_iter: max_iter) @params = {} @params[:reg_param] = reg_param @params[:max_iter] = max_iter @params[:probability] = probability @params[:n_jobs] = n_jobs @params[:random_seed] = random_seed @params[:random_seed] ||= srand @weight_vec = nil @prob_param = nil @classes = nil @rng = Random.new(@params[:random_seed]) end |
Instance Attribute Details
#classes ⇒ Numo::Int32 (readonly)
Return the class labels.
34 35 36 |
# File 'lib/rumale/kernel_machine/kernel_svc.rb', line 34 def classes @classes end |
#rng ⇒ Random (readonly)
Return the random generator for performing random sampling.
38 39 40 |
# File 'lib/rumale/kernel_machine/kernel_svc.rb', line 38 def rng @rng end |
#weight_vec ⇒ Numo::DFloat (readonly)
Return the weight vector for Kernel SVC.
30 31 32 |
# File 'lib/rumale/kernel_machine/kernel_svc.rb', line 30 def weight_vec @weight_vec end |
Instance Method Details
#decision_function(x) ⇒ Numo::DFloat
Calculate confidence scores for samples.
115 116 117 118 119 |
# File 'lib/rumale/kernel_machine/kernel_svc.rb', line 115 def decision_function(x) check_sample_array(x) x.dot(@weight_vec.transpose) end |
#fit(x, y) ⇒ KernelSVC
Fit the model with given training data.
75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 |
# File 'lib/rumale/kernel_machine/kernel_svc.rb', line 75 def fit(x, y) check_sample_array(x) check_label_array(y) check_sample_label_size(x, y) @classes = Numo::Int32[*y.to_a.uniq.sort] n_classes = @classes.size n_features = x.shape[1] if n_classes > 2 @weight_vec = Numo::DFloat.zeros(n_classes, n_features) @prob_param = Numo::DFloat.zeros(n_classes, 2) models = if enable_parallel? # :nocov: parallel_map(n_classes) do |n| bin_y = Numo::Int32.cast(y.eq(@classes[n])) * 2 - 1 partial_fit(x, bin_y) end # :nocov: else Array.new(n_classes) do |n| bin_y = Numo::Int32.cast(y.eq(@classes[n])) * 2 - 1 partial_fit(x, bin_y) end end models.each_with_index { |model, n| @weight_vec[n, true], @prob_param[n, true] = model } else negative_label = y.to_a.uniq.min bin_y = Numo::Int32.cast(y.ne(negative_label)) * 2 - 1 @weight_vec, @prob_param = partial_fit(x, bin_y) end self end |
#marshal_dump ⇒ Hash
Dump marshal data.
163 164 165 166 167 168 169 |
# File 'lib/rumale/kernel_machine/kernel_svc.rb', line 163 def marshal_dump { params: @params, weight_vec: @weight_vec, prob_param: @prob_param, classes: @classes, rng: @rng } end |
#marshal_load(obj) ⇒ nil
Load marshal data.
173 174 175 176 177 178 179 180 |
# File 'lib/rumale/kernel_machine/kernel_svc.rb', line 173 def marshal_load(obj) @params = obj[:params] @weight_vec = obj[:weight_vec] @prob_param = obj[:prob_param] @classes = obj[:classes] @rng = obj[:rng] nil end |
#predict(x) ⇒ Numo::Int32
Predict class labels for samples.
126 127 128 129 130 131 132 133 134 135 136 137 138 139 |
# File 'lib/rumale/kernel_machine/kernel_svc.rb', line 126 def predict(x) check_sample_array(x) return Numo::Int32.cast(decision_function(x).ge(0.0)) * 2 - 1 if @classes.size <= 2 n_samples, = x.shape decision_values = decision_function(x) predicted = if enable_parallel? parallel_map(n_samples) { |n| @classes[decision_values[n, true].max_index] } else Array.new(n_samples) { |n| @classes[decision_values[n, true].max_index] } end Numo::Int32.asarray(predicted) end |
#predict_proba(x) ⇒ Numo::DFloat
Predict probability for samples.
146 147 148 149 150 151 152 153 154 155 156 157 158 159 |
# File 'lib/rumale/kernel_machine/kernel_svc.rb', line 146 def predict_proba(x) check_sample_array(x) if @classes.size > 2 probs = 1.0 / (Numo::NMath.exp(@prob_param[true, 0] * decision_function(x) + @prob_param[true, 1]) + 1.0) return (probs.transpose / probs.sum(axis: 1)).transpose end n_samples, = x.shape probs = Numo::DFloat.zeros(n_samples, 2) probs[true, 1] = 1.0 / (Numo::NMath.exp(@prob_param[0] * decision_function(x) + @prob_param[1]) + 1.0) probs[true, 0] = 1.0 - probs[true, 1] probs end |