Class: Rumale::LinearModel::LogisticRegression
- Inherits:
-
BaseLinearModel
- Object
- BaseLinearModel
- Rumale::LinearModel::LogisticRegression
- Includes:
- Base::Classifier
- Defined in:
- lib/rumale/linear_model/logistic_regression.rb
Overview
LogisticRegression is a class that implements Logistic Regression with mini-batch stochastic gradient descent optimization. For multiclass classification problem, it uses one-vs-the-rest strategy.
Reference
-
Shalev-Shwartz, Y. Singer, N. Srebro, and A. Cotter, “Pegasos: Primal Estimated sub-GrAdient SOlver for SVM,” Mathematical Programming, vol. 127 (1), pp. 3–30, 2011.
-
Instance Attribute Summary collapse
-
#bias_term ⇒ Numo::DFloat
readonly
Return the bias term (a.k.a. intercept) for Logistic Regression.
-
#classes ⇒ Numo::Int32
readonly
Return the class labels.
-
#rng ⇒ Random
readonly
Return the random generator for performing random sampling.
-
#weight_vec ⇒ Numo::DFloat
readonly
Return the weight vector for Logistic Regression.
Attributes included from Base::BaseEstimator
Instance Method Summary collapse
-
#decision_function(x) ⇒ Numo::DFloat
Calculate confidence scores for samples.
-
#fit(x, y) ⇒ LogisticRegression
Fit the model with given training data.
-
#initialize(reg_param: 1.0, fit_bias: false, bias_scale: 1.0, max_iter: 1000, batch_size: 20, optimizer: nil, n_jobs: nil, random_seed: nil) ⇒ LogisticRegression
constructor
Create a new classifier with Logisitc Regression by the SGD optimization.
-
#marshal_dump ⇒ Hash
Dump marshal data.
-
#marshal_load(obj) ⇒ nil
Load marshal data.
-
#predict(x) ⇒ Numo::Int32
Predict class labels for samples.
-
#predict_proba(x) ⇒ Numo::DFloat
Predict probability for samples.
Methods included from Base::Classifier
Constructor Details
#initialize(reg_param: 1.0, fit_bias: false, bias_scale: 1.0, max_iter: 1000, batch_size: 20, optimizer: nil, n_jobs: nil, random_seed: nil) ⇒ LogisticRegression
Create a new classifier with Logisitc Regression by the SGD optimization.
54 55 56 57 58 59 60 61 62 63 |
# File 'lib/rumale/linear_model/logistic_regression.rb', line 54 def initialize(reg_param: 1.0, fit_bias: false, bias_scale: 1.0, max_iter: 1000, batch_size: 20, optimizer: nil, n_jobs: nil, random_seed: nil) check_params_float(reg_param: reg_param, bias_scale: bias_scale) check_params_integer(max_iter: max_iter, batch_size: batch_size) check_params_boolean(fit_bias: fit_bias) check_params_type_or_nil(Integer, n_jobs: n_jobs, random_seed: random_seed) check_params_positive(reg_param: reg_param, bias_scale: bias_scale, max_iter: max_iter, batch_size: batch_size) super @classes = nil end |
Instance Attribute Details
#bias_term ⇒ Numo::DFloat (readonly)
Return the bias term (a.k.a. intercept) for Logistic Regression.
29 30 31 |
# File 'lib/rumale/linear_model/logistic_regression.rb', line 29 def bias_term @bias_term end |
#classes ⇒ Numo::Int32 (readonly)
Return the class labels.
33 34 35 |
# File 'lib/rumale/linear_model/logistic_regression.rb', line 33 def classes @classes end |
#rng ⇒ Random (readonly)
Return the random generator for performing random sampling.
37 38 39 |
# File 'lib/rumale/linear_model/logistic_regression.rb', line 37 def rng @rng end |
#weight_vec ⇒ Numo::DFloat (readonly)
Return the weight vector for Logistic Regression.
25 26 27 |
# File 'lib/rumale/linear_model/logistic_regression.rb', line 25 def weight_vec @weight_vec end |
Instance Method Details
#decision_function(x) ⇒ Numo::DFloat
Calculate confidence scores for samples.
109 110 111 112 |
# File 'lib/rumale/linear_model/logistic_regression.rb', line 109 def decision_function(x) check_sample_array(x) x.dot(@weight_vec.transpose) + @bias_term end |
#fit(x, y) ⇒ LogisticRegression
Fit the model with given training data.
70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 |
# File 'lib/rumale/linear_model/logistic_regression.rb', line 70 def fit(x, y) check_sample_array(x) check_label_array(y) check_sample_label_size(x, y) @classes = Numo::Int32[*y.to_a.uniq.sort] n_classes = @classes.size n_features = x.shape[1] if n_classes > 2 @weight_vec = Numo::DFloat.zeros(n_classes, n_features) @bias_term = Numo::DFloat.zeros(n_classes) if enable_parallel? # :nocov: models = parallel_map(n_classes) do |n| bin_y = Numo::Int32.cast(y.eq(@classes[n])) * 2 - 1 partial_fit(x, bin_y) end # :nocov: n_classes.times { |n| @weight_vec[n, true], @bias_term[n] = models[n] } else n_classes.times do |n| bin_y = Numo::Int32.cast(y.eq(@classes[n])) * 2 - 1 @weight_vec[n, true], @bias_term[n] = partial_fit(x, bin_y) end end else negative_label = y.to_a.uniq.min bin_y = Numo::Int32.cast(y.ne(negative_label)) * 2 - 1 @weight_vec, @bias_term = partial_fit(x, bin_y) end self end |
#marshal_dump ⇒ Hash
Dump marshal data.
152 153 154 155 156 157 158 |
# File 'lib/rumale/linear_model/logistic_regression.rb', line 152 def marshal_dump { params: @params, weight_vec: @weight_vec, bias_term: @bias_term, classes: @classes, rng: @rng } end |
#marshal_load(obj) ⇒ nil
Load marshal data.
162 163 164 165 166 167 168 169 |
# File 'lib/rumale/linear_model/logistic_regression.rb', line 162 def marshal_load(obj) @params = obj[:params] @weight_vec = obj[:weight_vec] @bias_term = obj[:bias_term] @classes = obj[:classes] @rng = obj[:rng] nil end |
#predict(x) ⇒ Numo::Int32
Predict class labels for samples.
118 119 120 121 122 123 124 125 126 127 128 129 130 131 |
# File 'lib/rumale/linear_model/logistic_regression.rb', line 118 def predict(x) check_sample_array(x) return Numo::Int32.cast(predict_proba(x)[true, 1].ge(0.5)) * 2 - 1 if @classes.size <= 2 n_samples, = x.shape decision_values = predict_proba(x) predicted = if enable_parallel? parallel_map(n_samples) { |n| @classes[decision_values[n, true].max_index] } else Array.new(n_samples) { |n| @classes[decision_values[n, true].max_index] } end Numo::Int32.asarray(predicted) end |
#predict_proba(x) ⇒ Numo::DFloat
Predict probability for samples.
137 138 139 140 141 142 143 144 145 146 147 148 |
# File 'lib/rumale/linear_model/logistic_regression.rb', line 137 def predict_proba(x) check_sample_array(x) proba = 1.0 / (Numo::NMath.exp(-decision_function(x)) + 1.0) return (proba.transpose / proba.sum(axis: 1)).transpose if @classes.size > 2 n_samples, = x.shape probs = Numo::DFloat.zeros(n_samples, 2) probs[true, 1] = proba probs[true, 0] = 1.0 - proba probs end |