Class: Rumale::LinearModel::SVR
- Inherits:
-
BaseLinearModel
- Object
- BaseLinearModel
- Rumale::LinearModel::SVR
- Includes:
- Base::Regressor
- Defined in:
- lib/rumale/linear_model/svr.rb
Overview
SVR is a class that implements Support Vector Regressor with mini-batch stochastic gradient descent optimization.
Reference
-
Shalev-Shwartz and Y. Singer, “Pegasos: Primal Estimated sub-GrAdient SOlver for SVM,” Proc. ICML’07, pp. 807–814, 2007.
-
Instance Attribute Summary collapse
-
#bias_term ⇒ Numo::DFloat
readonly
Return the bias term (a.k.a. intercept) for SVR.
-
#rng ⇒ Random
readonly
Return the random generator for performing random sampling.
-
#weight_vec ⇒ Numo::DFloat
readonly
Return the weight vector for SVR.
Attributes included from Base::BaseEstimator
Instance Method Summary collapse
-
#fit(x, y) ⇒ SVR
Fit the model with given training data.
-
#initialize(reg_param: 1.0, fit_bias: false, bias_scale: 1.0, epsilon: 0.1, max_iter: 1000, batch_size: 20, optimizer: nil, n_jobs: nil, random_seed: nil) ⇒ SVR
constructor
Create a new regressor with Support Vector Machine by the SGD optimization.
-
#marshal_dump ⇒ Hash
Dump marshal data.
-
#marshal_load(obj) ⇒ nil
Load marshal data.
-
#predict(x) ⇒ Numo::DFloat
Predict values for samples.
Methods included from Base::Regressor
Constructor Details
#initialize(reg_param: 1.0, fit_bias: false, bias_scale: 1.0, epsilon: 0.1, max_iter: 1000, batch_size: 20, optimizer: nil, n_jobs: nil, random_seed: nil) ⇒ SVR
Create a new regressor with Support Vector Machine by the SGD optimization.
49 50 51 52 53 54 55 56 57 58 59 60 61 |
# File 'lib/rumale/linear_model/svr.rb', line 49 def initialize(reg_param: 1.0, fit_bias: false, bias_scale: 1.0, epsilon: 0.1, max_iter: 1000, batch_size: 20, optimizer: nil, n_jobs: nil, random_seed: nil) check_params_float(reg_param: reg_param, bias_scale: bias_scale, epsilon: epsilon) check_params_integer(max_iter: max_iter, batch_size: batch_size) check_params_boolean(fit_bias: fit_bias) check_params_type_or_nil(Integer, n_jobs: n_jobs, random_seed: random_seed) check_params_positive(reg_param: reg_param, bias_scale: bias_scale, epsilon: epsilon, max_iter: max_iter, batch_size: batch_size) keywd_args = method(:initialize).parameters.map { |_t, arg| [arg, binding.local_variable_get(arg)] }.to_h keywd_args.delete(:epsilon) super(keywd_args) @params[:epsilon] = epsilon end |
Instance Attribute Details
#bias_term ⇒ Numo::DFloat (readonly)
Return the bias term (a.k.a. intercept) for SVR.
28 29 30 |
# File 'lib/rumale/linear_model/svr.rb', line 28 def bias_term @bias_term end |
#rng ⇒ Random (readonly)
Return the random generator for performing random sampling.
32 33 34 |
# File 'lib/rumale/linear_model/svr.rb', line 32 def rng @rng end |
#weight_vec ⇒ Numo::DFloat (readonly)
Return the weight vector for SVR.
24 25 26 |
# File 'lib/rumale/linear_model/svr.rb', line 24 def weight_vec @weight_vec end |
Instance Method Details
#fit(x, y) ⇒ SVR
Fit the model with given training data.
68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 |
# File 'lib/rumale/linear_model/svr.rb', line 68 def fit(x, y) check_sample_array(x) check_tvalue_array(y) check_sample_tvalue_size(x, y) n_outputs = y.shape[1].nil? ? 1 : y.shape[1] n_features = x.shape[1] if n_outputs > 1 @weight_vec = Numo::DFloat.zeros(n_outputs, n_features) @bias_term = Numo::DFloat.zeros(n_outputs) if enable_parallel? models = parallel_map(n_outputs) { |n| partial_fit(x, y[true, n]) } n_outputs.times { |n| @weight_vec[n, true], @bias_term[n] = models[n] } else n_outputs.times { |n| @weight_vec[n, true], @bias_term[n] = partial_fit(x, y[true, n]) } end else @weight_vec, @bias_term = partial_fit(x, y) end self end |
#marshal_dump ⇒ Hash
Dump marshal data.
103 104 105 106 107 108 |
# File 'lib/rumale/linear_model/svr.rb', line 103 def marshal_dump { params: @params, weight_vec: @weight_vec, bias_term: @bias_term, rng: @rng } end |
#marshal_load(obj) ⇒ nil
Load marshal data.
112 113 114 115 116 117 118 |
# File 'lib/rumale/linear_model/svr.rb', line 112 def marshal_load(obj) @params = obj[:params] @weight_vec = obj[:weight_vec] @bias_term = obj[:bias_term] @rng = obj[:rng] nil end |
#predict(x) ⇒ Numo::DFloat
Predict values for samples.
96 97 98 99 |
# File 'lib/rumale/linear_model/svr.rb', line 96 def predict(x) check_sample_array(x) x.dot(@weight_vec.transpose) + @bias_term end |