Class: Rumale::PolynomialModel::FactorizationMachineClassifier
- Inherits:
-
BaseFactorizationMachine
- Object
- BaseFactorizationMachine
- Rumale::PolynomialModel::FactorizationMachineClassifier
- Includes:
- Base::Classifier
- Defined in:
- lib/rumale/polynomial_model/factorization_machine_classifier.rb
Overview
FactorizationMachineClassifier is a class that implements Factorization Machine with stochastic gradient descent (SGD) optimization. For multiclass classification problem, it uses one-vs-the-rest strategy.
Reference
-
Rendle, “Factorization Machines with libFM,” ACM TIST, vol. 3 (3), pp. 57:1–57:22, 2012.
-
-
Rendle, “Factorization Machines,” Proc. ICDM’10, pp. 995–1000, 2010.
-
Instance Attribute Summary collapse
-
#bias_term ⇒ Numo::DFloat
readonly
Return the bias term for Factoriazation Machine.
-
#classes ⇒ Numo::Int32
readonly
Return the class labels.
-
#factor_mat ⇒ Numo::DFloat
readonly
Return the factor matrix for Factorization Machine.
-
#rng ⇒ Random
readonly
Return the random generator for random sampling.
-
#weight_vec ⇒ Numo::DFloat
readonly
Return the weight vector for Factorization Machine.
Attributes included from Base::BaseEstimator
Instance Method Summary collapse
-
#decision_function(x) ⇒ Numo::DFloat
Calculate confidence scores for samples.
-
#fit(x, y) ⇒ FactorizationMachineClassifier
Fit the model with given training data.
-
#initialize(n_factors: 2, loss: 'hinge', reg_param_linear: 1.0, reg_param_factor: 1.0, max_iter: 1000, batch_size: 10, optimizer: nil, n_jobs: nil, random_seed: nil) ⇒ FactorizationMachineClassifier
constructor
Create a new classifier with Factorization Machine.
-
#marshal_dump ⇒ Hash
Dump marshal data.
-
#marshal_load(obj) ⇒ nil
Load marshal data.
-
#predict(x) ⇒ Numo::Int32
Predict class labels for samples.
-
#predict_proba(x) ⇒ Numo::DFloat
Predict probability for samples.
Methods included from Base::Classifier
Constructor Details
#initialize(n_factors: 2, loss: 'hinge', reg_param_linear: 1.0, reg_param_factor: 1.0, max_iter: 1000, batch_size: 10, optimizer: nil, n_jobs: nil, random_seed: nil) ⇒ FactorizationMachineClassifier
Create a new classifier with Factorization Machine.
62 63 64 65 66 67 68 69 70 71 72 73 |
# File 'lib/rumale/polynomial_model/factorization_machine_classifier.rb', line 62 def initialize(n_factors: 2, loss: 'hinge', reg_param_linear: 1.0, reg_param_factor: 1.0, max_iter: 1000, batch_size: 10, optimizer: nil, n_jobs: nil, random_seed: nil) check_params_float(reg_param_linear: reg_param_linear, reg_param_factor: reg_param_factor) check_params_integer(n_factors: n_factors, max_iter: max_iter, batch_size: batch_size) check_params_string(loss: loss) check_params_type_or_nil(Integer, n_jobs: n_jobs, random_seed: random_seed) check_params_positive(n_factors: n_factors, reg_param_linear: reg_param_linear, reg_param_factor: reg_param_factor, max_iter: max_iter, batch_size: batch_size) super @classes = nil end |
Instance Attribute Details
#bias_term ⇒ Numo::DFloat (readonly)
Return the bias term for Factoriazation Machine.
37 38 39 |
# File 'lib/rumale/polynomial_model/factorization_machine_classifier.rb', line 37 def bias_term @bias_term end |
#classes ⇒ Numo::Int32 (readonly)
Return the class labels.
41 42 43 |
# File 'lib/rumale/polynomial_model/factorization_machine_classifier.rb', line 41 def classes @classes end |
#factor_mat ⇒ Numo::DFloat (readonly)
Return the factor matrix for Factorization Machine.
29 30 31 |
# File 'lib/rumale/polynomial_model/factorization_machine_classifier.rb', line 29 def factor_mat @factor_mat end |
#rng ⇒ Random (readonly)
Return the random generator for random sampling.
45 46 47 |
# File 'lib/rumale/polynomial_model/factorization_machine_classifier.rb', line 45 def rng @rng end |
#weight_vec ⇒ Numo::DFloat (readonly)
Return the weight vector for Factorization Machine.
33 34 35 |
# File 'lib/rumale/polynomial_model/factorization_machine_classifier.rb', line 33 def weight_vec @weight_vec end |
Instance Method Details
#decision_function(x) ⇒ Numo::DFloat
Calculate confidence scores for samples.
120 121 122 123 124 125 126 127 128 129 |
# File 'lib/rumale/polynomial_model/factorization_machine_classifier.rb', line 120 def decision_function(x) check_sample_array(x) linear_term = @bias_term + x.dot(@weight_vec.transpose) factor_term = if @classes.size <= 2 0.5 * (@factor_mat.dot(x.transpose)**2 - (@factor_mat**2).dot(x.transpose**2)).sum(0) else 0.5 * (@factor_mat.dot(x.transpose)**2 - (@factor_mat**2).dot(x.transpose**2)).sum(1).transpose end linear_term + factor_term end |
#fit(x, y) ⇒ FactorizationMachineClassifier
Fit the model with given training data.
80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 |
# File 'lib/rumale/polynomial_model/factorization_machine_classifier.rb', line 80 def fit(x, y) check_sample_array(x) check_label_array(y) check_sample_label_size(x, y) @classes = Numo::Int32[*y.to_a.uniq.sort] n_classes = @classes.size _n_samples, n_features = x.shape if n_classes > 2 @factor_mat = Numo::DFloat.zeros(n_classes, @params[:n_factors], n_features) @weight_vec = Numo::DFloat.zeros(n_classes, n_features) @bias_term = Numo::DFloat.zeros(n_classes) if enable_parallel? # :nocov: models = parallel_map(n_classes) do |n| bin_y = Numo::Int32.cast(y.eq(@classes[n])) * 2 - 1 partial_fit(x, bin_y) end # :nocov: n_classes.times { |n| @factor_mat[n, true, true], @weight_vec[n, true], @bias_term[n] = models[n] } else n_classes.times do |n| bin_y = Numo::Int32.cast(y.eq(@classes[n])) * 2 - 1 @factor_mat[n, true, true], @weight_vec[n, true], @bias_term[n] = partial_fit(x, bin_y) end end else negative_label = y.to_a.uniq.min bin_y = Numo::Int32.cast(y.ne(negative_label)) * 2 - 1 @factor_mat, @weight_vec, @bias_term = partial_fit(x, bin_y) end self end |
#marshal_dump ⇒ Hash
Dump marshal data.
167 168 169 170 171 172 173 174 |
# File 'lib/rumale/polynomial_model/factorization_machine_classifier.rb', line 167 def marshal_dump { params: @params, factor_mat: @factor_mat, weight_vec: @weight_vec, bias_term: @bias_term, classes: @classes, rng: @rng } end |
#marshal_load(obj) ⇒ nil
Load marshal data.
178 179 180 181 182 183 184 185 186 |
# File 'lib/rumale/polynomial_model/factorization_machine_classifier.rb', line 178 def marshal_load(obj) @params = obj[:params] @factor_mat = obj[:factor_mat] @weight_vec = obj[:weight_vec] @bias_term = obj[:bias_term] @classes = obj[:classes] @rng = obj[:rng] nil end |
#predict(x) ⇒ Numo::Int32
Predict class labels for samples.
135 136 137 138 139 140 141 142 143 144 145 146 147 |
# File 'lib/rumale/polynomial_model/factorization_machine_classifier.rb', line 135 def predict(x) check_sample_array(x) return Numo::Int32.cast(decision_function(x).ge(0.0)) * 2 - 1 if @classes.size <= 2 n_samples = x.shape[0] decision_values = decision_function(x) predicted = if enable_parallel? parallel_map(n_samples) { |n| @classes[decision_values[n, true].max_index] } else Array.new(n_samples) { |n| @classes[decision_values[n, true].max_index] } end Numo::Int32.asarray(predicted) end |
#predict_proba(x) ⇒ Numo::DFloat
Predict probability for samples.
153 154 155 156 157 158 159 160 161 162 163 |
# File 'lib/rumale/polynomial_model/factorization_machine_classifier.rb', line 153 def predict_proba(x) check_sample_array(x) proba = 1.0 / (Numo::NMath.exp(-decision_function(x)) + 1.0) return (proba.transpose / proba.sum(axis: 1)).transpose if @classes.size > 2 n_samples, = x.shape probs = Numo::DFloat.zeros(n_samples, 2) probs[true, 1] = proba probs[true, 0] = 1.0 - proba probs end |