Class: Rumale::Tree::DecisionTreeRegressor
- Inherits:
-
BaseDecisionTree
- Object
- BaseDecisionTree
- Rumale::Tree::DecisionTreeRegressor
- Includes:
- Base::Regressor
- Defined in:
- lib/rumale/tree/decision_tree_regressor.rb
Overview
DecisionTreeRegressor is a class that implements decision tree for regression.
Direct Known Subclasses
Instance Attribute Summary collapse
-
#feature_importances ⇒ Numo::DFloat
readonly
Return the importance for each feature.
-
#leaf_values ⇒ Numo::DFloat
readonly
Return the values assigned each leaf.
-
#rng ⇒ Random
readonly
Return the random generator for random selection of feature index.
-
#tree ⇒ Node
readonly
Return the learned tree.
Attributes included from Base::BaseEstimator
Instance Method Summary collapse
-
#fit(x, y) ⇒ DecisionTreeRegressor
Fit the model with given training data.
-
#initialize(criterion: 'mse', max_depth: nil, max_leaf_nodes: nil, min_samples_leaf: 1, max_features: nil, random_seed: nil) ⇒ DecisionTreeRegressor
constructor
Create a new regressor with decision tree algorithm.
-
#marshal_dump ⇒ Hash
Dump marshal data.
-
#marshal_load(obj) ⇒ nil
Load marshal data.
-
#predict(x) ⇒ Numo::DFloat
Predict values for samples.
Methods included from Base::Regressor
Methods inherited from BaseDecisionTree
Constructor Details
#initialize(criterion: 'mse', max_depth: nil, max_leaf_nodes: nil, min_samples_leaf: 1, max_features: nil, random_seed: nil) ⇒ DecisionTreeRegressor
Create a new regressor with decision tree algorithm.
50 51 52 53 54 55 56 57 58 59 60 |
# File 'lib/rumale/tree/decision_tree_regressor.rb', line 50 def initialize(criterion: 'mse', max_depth: nil, max_leaf_nodes: nil, min_samples_leaf: 1, max_features: nil, random_seed: nil) check_params_type_or_nil(Integer, max_depth: max_depth, max_leaf_nodes: max_leaf_nodes, max_features: max_features, random_seed: random_seed) check_params_integer(min_samples_leaf: min_samples_leaf) check_params_string(criterion: criterion) check_params_positive(max_depth: max_depth, max_leaf_nodes: max_leaf_nodes, min_samples_leaf: min_samples_leaf, max_features: max_features) super @leaf_values = nil end |
Instance Attribute Details
#feature_importances ⇒ Numo::DFloat (readonly)
Return the importance for each feature.
24 25 26 |
# File 'lib/rumale/tree/decision_tree_regressor.rb', line 24 def feature_importances @feature_importances end |
#leaf_values ⇒ Numo::DFloat (readonly)
Return the values assigned each leaf.
36 37 38 |
# File 'lib/rumale/tree/decision_tree_regressor.rb', line 36 def leaf_values @leaf_values end |
#rng ⇒ Random (readonly)
Return the random generator for random selection of feature index.
32 33 34 |
# File 'lib/rumale/tree/decision_tree_regressor.rb', line 32 def rng @rng end |
#tree ⇒ Node (readonly)
Return the learned tree.
28 29 30 |
# File 'lib/rumale/tree/decision_tree_regressor.rb', line 28 def tree @tree end |
Instance Method Details
#fit(x, y) ⇒ DecisionTreeRegressor
Fit the model with given training data.
67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 |
# File 'lib/rumale/tree/decision_tree_regressor.rb', line 67 def fit(x, y) check_sample_array(x) check_tvalue_array(y) check_sample_tvalue_size(x, y) n_samples, n_features = x.shape @params[:max_features] = n_features if @params[:max_features].nil? @params[:max_features] = [@params[:max_features], n_features].min @n_leaves = 0 @leaf_values = [] @sub_rng = @rng.dup build_tree(x, y) eval_importance(n_samples, n_features) @leaf_values = Numo::DFloat.cast(@leaf_values) @leaf_values = @leaf_values.flatten.dup if @leaf_values.shape[1] == 1 self end |
#marshal_dump ⇒ Hash
Dump marshal data.
95 96 97 98 99 100 101 |
# File 'lib/rumale/tree/decision_tree_regressor.rb', line 95 def marshal_dump { params: @params, tree: @tree, feature_importances: @feature_importances, leaf_values: @leaf_values, rng: @rng } end |
#marshal_load(obj) ⇒ nil
Load marshal data.
105 106 107 108 109 110 111 112 |
# File 'lib/rumale/tree/decision_tree_regressor.rb', line 105 def marshal_load(obj) @params = obj[:params] @tree = obj[:tree] @feature_importances = obj[:feature_importances] @leaf_values = obj[:leaf_values] @rng = obj[:rng] nil end |
#predict(x) ⇒ Numo::DFloat
Predict values for samples.
88 89 90 91 |
# File 'lib/rumale/tree/decision_tree_regressor.rb', line 88 def predict(x) check_sample_array(x) @leaf_values.shape[1].nil? ? @leaf_values[apply(x)].dup : @leaf_values[apply(x), true].dup end |