Class: Rust::Models::Regression::LinearRegressionModel
- Inherits:
-
RegressionModel
- Object
- RustDatatype
- RegressionModel
- Rust::Models::Regression::LinearRegressionModel
- Defined in:
- lib/rust/models/regression.rb
Overview
Represents a linear regression model in R.
Class Method Summary collapse
- .can_pull?(type, klass) ⇒ Boolean
-
.generate(dependent_variable, independent_variables, data, **options) ⇒ Object
Generates a linear regression model, given its
dependent_variable
andindependent_variables
and itsdata
. - .pull_variable(variable, type, klass) ⇒ Object
Methods inherited from RegressionModel
#actuals, #coefficients, #fitted, #initialize, #load_in_r_as, #method_missing, #model, #mse, #r_2, #r_2_adjusted, #r_hash, #residuals, #summary
Methods inherited from RustDatatype
#load_in_r_as, pull_priority, #r_hash, #r_mirror, #r_mirror_to
Constructor Details
This class inherits a constructor from Rust::Models::Regression::RegressionModel
Dynamic Method Handling
This class handles dynamic methods through the method_missing method in the class Rust::Models::Regression::RegressionModel
Class Method Details
.can_pull?(type, klass) ⇒ Boolean
147 148 149 |
# File 'lib/rust/models/regression.rb', line 147 def self.can_pull?(type, klass) return type == "list" && klass == "lm" end |
.generate(dependent_variable, independent_variables, data, **options) ⇒ Object
Generates a linear regression model, given its dependent_variable
and independent_variables
and its data
. options
can be specified and directly passed to the model.
161 162 163 164 165 166 167 168 169 170 |
# File 'lib/rust/models/regression.rb', line 161 def self.generate(dependent_variable, independent_variables, data, **) RegressionModel.generate( LinearRegressionModel, "lm", dependent_variable, independent_variables, data, ** ) end |
.pull_variable(variable, type, klass) ⇒ Object
151 152 153 154 155 |
# File 'lib/rust/models/regression.rb', line 151 def self.pull_variable(variable, type, klass) model = Rust::RustDatatype.pull_variable(variable, Rust::List) return LinearRegressionModel.new(model) end |