Class: SimpleGa::GeneticAlgorithm::Chromosome
- Inherits:
-
Object
- Object
- SimpleGa::GeneticAlgorithm::Chromosome
- Defined in:
- lib/simple_ga/genetic_algorithm.rb
Overview
A Chromosome is a representation of an individual solution for a specific problem. You will have to redifine the Chromosome representation for each particular problem, along with its fitness, mutate, reproduce, and seed methods.
Instance Attribute Summary collapse
-
#data ⇒ Object
Returns the value of attribute data.
-
#normalized_fitness ⇒ Object
Returns the value of attribute normalized_fitness.
Class Method Summary collapse
-
.mutate(chromosome) ⇒ Object
Mutation method is used to maintain genetic diversity from one generation of a population of chromosomes to the next.
-
.reproduce(a, b) ⇒ Object
Chromosome a and b might be the same.
-
.seed ⇒ Object
Initializes an individual solution (chromosome) for the initial population.
-
.set_params(available_courses, current_gpa, acum_ch) ⇒ Object
available_courses is an array of arrays containing a list of available courses with the course information e.g.
Instance Method Summary collapse
-
#fitness ⇒ Object
The fitness method quantifies the optimality of a solution (that is, a chromosome) in a genetic algorithm so that that particular chromosome may be ranked against all the other chromosomes.
-
#improved_fitness ⇒ Object
The evolution value.
-
#initialize(data) ⇒ Chromosome
constructor
Chromosome.new.
- #num_of_selected_genes ⇒ Object
Constructor Details
#initialize(data) ⇒ Chromosome
Chromosome.new
175 176 177 |
# File 'lib/simple_ga/genetic_algorithm.rb', line 175 def initialize(data) # Chromosome.new @data = data end |
Instance Attribute Details
#data ⇒ Object
Returns the value of attribute data.
172 173 174 |
# File 'lib/simple_ga/genetic_algorithm.rb', line 172 def data @data end |
#normalized_fitness ⇒ Object
Returns the value of attribute normalized_fitness.
173 174 175 |
# File 'lib/simple_ga/genetic_algorithm.rb', line 173 def normalized_fitness @normalized_fitness end |
Class Method Details
.mutate(chromosome) ⇒ Object
Mutation method is used to maintain genetic diversity from one generation of a population of chromosomes to the next. It is analogous to biological mutation.
The purpose of mutation in GAs is to allow the algorithm to avoid local minima by preventing the population of chromosomes from becoming too similar to each other, thus slowing or even stopping evolution.
Callling the mutate function will “probably” slightly change a chromosome randomly.
278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 |
# File 'lib/simple_ga/genetic_algorithm.rb', line 278 def self.mutate(chromosome) if chromosome.normalized_fitness && rand < ((1 - chromosome.normalized_fitness) * 0.4) courses, grades = [], [] data = chromosome.data # Split the chromosome into 2. 0.step(data.length-1, 2) do |j| courses << data[j] grades << data[j+1] end p1 = (rand * courses.length-1).ceil courses[p1] = rand(2) p2 = (rand * grades.length-1).ceil grades[p2] = (1 + rand(6)) # Recombine the chromosome. # [0,1,2,3,4,5,6,7,8,9,10] 0.upto(courses.length-1) do |j| even_index = j * 2 odd_index = even_index + 1 data[even_index] = courses[j] data[odd_index] = grades[j] end chromosome.data = data @fitness = nil end end |
.reproduce(a, b) ⇒ Object
Chromosome a and b might be the same.
- NOTE
-
Why is chromosome a the same as chromosome b?
319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 |
# File 'lib/simple_ga/genetic_algorithm.rb', line 319 def self.reproduce(a, b) # We know that (a.data.length == b.data.length) must be always true. chromosomeLength = a.data.length aCourses, bCourses, aGrades, bGrades = [], [], [], [] # Split the chromosome into 2. 0.step(chromosomeLength-1, 2) do |index| next_index = index + 1 aCourses << a.data[index] aGrades << a.data[next_index] bCourses << b.data[index] bGrades << b.data[next_index] end # One-point crossover # We know that (aCourses.length == aGrades.length) must be always true. # However, we want to cut and cross at different points for the # corresponding course and grade array. # Avoid slice(0,0) or slice (11,11). It brings no changes. course_Xpoint = rand(aCourses.length-1) + 1 grade_Xpoint = rand(aGrades.length-1) + 1 new_Courses = aCourses.slice(0, course_Xpoint) + bCourses.slice(course_Xpoint, aCourses.length) new_Grades = aGrades.slice(0, grade_Xpoint) + bGrades.slice(grade_Xpoint, aGrades.length) spawn = [] # We know that (new_Courses.length == new_Grades.length) must be always true. 0.upto(new_Courses.length-1) do |i| spawn << new_Courses[i] spawn << new_Grades[i] end return Chromosome.new(spawn) end |
.seed ⇒ Object
Initializes an individual solution (chromosome) for the initial population. Usually the chromosome is generated randomly, but you can use some problem domain knowledge, to generate a (probably) better initial solution.
358 359 360 361 362 363 364 365 366 367 368 |
# File 'lib/simple_ga/genetic_algorithm.rb', line 358 def self.seed # Current state inputs to be retrieved from the database. # ncourse = 11 seed = [] 1.step(@@ncourse*2, 2) do |j| seed << rand(2) seed << (1 + rand(6)) end return Chromosome.new(seed) end |
.set_params(available_courses, current_gpa, acum_ch) ⇒ Object
available_courses is an array of arrays containing a list of available courses with the course information e.g. [[<course_name>, <course_ch], [<course_name>, <course_ch]]
373 374 375 376 377 378 379 380 381 382 |
# File 'lib/simple_ga/genetic_algorithm.rb', line 373 def self.set_params(available_courses, current_gpa, acum_ch) @@credits = [] @@old_gpa = current_gpa @@old_total_credits = acum_ch @@old_cgpa = @@old_gpa/@@old_total_credits @@ncourse = available_courses.length available_courses.each do |course_info| @@credits << course_info[1] end end |
Instance Method Details
#fitness ⇒ Object
The fitness method quantifies the optimality of a solution (that is, a chromosome) in a genetic algorithm so that that particular chromosome may be ranked against all the other chromosomes.
Optimal chromosomes, or at least chromosomes which are more optimal, are allowed to breed and mix their datasets by any of several techniques, producing a new generation that will (hopefully) be even better.
196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 |
# File 'lib/simple_ga/genetic_algorithm.rb', line 196 def fitness return @fitness if @fitness # Current state inputs to be retrieved from the database. @@credits = [2,3,3,3,5,2,4,4,4,4,3] @@old_gpa = 58 @@old_total_credits = 16 min_credits = 16 max_credits = 20 target_cgpa ||= 3.7 courses, grades, points = [], [], [] # Split the chromosome into 2. 0.step(@data.length-1, 2) do |j| courses << @data[j] grades << @data[j+1] end total_credits = ([courses, @@credits].transpose.map {|x| x.inject(:*)}).inject{|sum,x| sum + x } new_total_credits = @@old_total_credits + total_credits grades.each do |grade| case grade when 1 points << 4.00 when 2 points << 3.70 when 3 points << 3.30 when 4 points << 3.00 when 5 points << 2.70 when 6 points << 2.30 when 7 points << 2.00 end end gpa = (([@@credits, courses, points].transpose.map {|x| x.inject(:*)}).inject{|sum,x| sum + x }).round(2) new_gpa = @@old_gpa + gpa cgpa = (new_gpa/new_total_credits).round(2) # Core constraints. # Elites own a high fitness value. # The higher the fitness value, the higher the chance of being selected. if total_credits <= max_credits && total_credits >= min_credits && cgpa >= target_cgpa @fitness = cgpa # This chromosome doesn't satisfy the important constraints # e.g. within the range of min_credits and max_credits # should be discarded. # Perhaps, we should add cases that statisfy one of the constraints # 1. credit hours + cgpa # 2. credit hours else # Negative cgpa value will allow the invalid chromosome to be considered. # However, surprisingly the solutions suggested are more consistent and # diverse. @fitness = 0 end return @fitness end |
#improved_fitness ⇒ Object
The evolution value
262 263 264 |
# File 'lib/simple_ga/genetic_algorithm.rb', line 262 def improved_fitness return @fitness - @@old_cgpa end |
#num_of_selected_genes ⇒ Object
179 180 181 182 183 184 185 186 187 |
# File 'lib/simple_ga/genetic_algorithm.rb', line 179 def num_of_selected_genes count = 0 data.each_with_index do |gene, index| if index % 2 == 0 && gene == 1 count += 1 end end return count end |