Class: Snow::Quat
- Inherits:
-
Data
- Object
- Data
- Snow::Quat
- Defined in:
- lib/snow-math/quat.rb,
lib/snow-math/ptr.rb,
lib/snow-math/to_a.rb,
lib/snow-math/inspect.rb,
lib/snow-math/marshal.rb,
lib/snow-math/swizzle.rb,
ext/snow-math/snow-math.c
Overview
A simple quaternion class for representation rotations.
Constant Summary collapse
- POS_X =
self.new(1, 0, 0, 1).freeze
- POS_Y =
self.new(0, 1, 0, 1).freeze
- POS_Z =
self.new(0, 0, 1, 1).freeze
- NEG_X =
self.new(-1, 0, 0, 1).freeze
- NEG_Y =
self.new(0, -1, 0, 1).freeze
- NEG_Z =
self.new(0, 0, -1, 1).freeze
- ONE =
self.new(1, 1, 1, 1).freeze
- ZERO =
self.new(0, 0, 0, 0).freeze
- IDENTITY =
self.new(0, 0, 0, 1).freeze
- SIZE =
INT2FIX(sizeof(quat_t))
- LENGTH =
INT2FIX(sizeof(quat_t) / sizeof(s_float_t))
- @@SWIZZLE_CHARS =
/^[xyzw]{2,4}$/
- @@SWIZZLE_MAPPING =
{ 2 => ::Snow::Vec2, 3 => ::Snow::Vec3, 4 => self, 'x' => 0, 'y' => 1, 'z' => 2, 'w' => 3 }
Class Method Summary collapse
-
.angle_axis(*args) ⇒ Object
Returns a quaternion describing a rotation around a given axis.
-
.new(*args) ⇒ Object
(also: [])
Allocates a new Quat.
Instance Method Summary collapse
-
#==(sm_other) ⇒ Object
Tests this Vec4 or Quat and another Vec4 or Quat for equivalency.
-
#add(*args) ⇒ Object
(also: #+)
Adds this and another vector or quaternion’s components together and returns the result.
-
#add!(rhs) ⇒ Object
Calls #add(rhs, self).
-
#address ⇒ Object
Returns the memory address of the object.
-
#copy(*args) ⇒ Object
(also: #dup, #clone)
Returns a copy of self.
-
#divide(*args) ⇒ Object
(also: #/)
Divides this vector or quaternion’s components by a scalar value and returns the result.
-
#divide!(rhs) ⇒ Object
Calls #divide(rhs, self).
-
#dot_product(sm_other) ⇒ Object
(also: #**)
Returns the dot product of self and another Vec4 or Quat.
-
#fetch ⇒ Object
(also: #[])
Gets the component of the Quat at the given index.
-
#initialize(*args) ⇒ Object
constructor
Sets the Quat’s components.
-
#inverse(*args) ⇒ Object
(also: #~)
Returns the inverse of this Quat.
-
#inverse! ⇒ Object
Calls #inverse(self).
-
#length ⇒ Object
Returns the length of the Quat in components.
-
#load_identity ⇒ Object
Sets self to the identity quaternion.
-
#magnitude ⇒ Object
Returns the magnitude of self.
-
#magnitude_squared ⇒ Object
Returns the squared magnitude of self.
-
#multiply(rhs, output = nil) ⇒ Object
(also: #*)
Wrapper around #multiply_quat, #multiply_vec3, and #scale respectively.
-
#multiply!(rhs) ⇒ Object
Calls #multiply(rhs, self) for scaling and Quat multiplication, otherwise calls #multiply(rhs, rhs) for Vec3 multiplication.
-
#multiply_quat(*args) ⇒ Object
Concatenates this quaternion and another and returns the result.
-
#multiply_quat!(rhs) ⇒ Object
Calls #multiply_quat(rhs, self).
-
#multiply_vec3(*args) ⇒ Object
Multiplies a quaternion and vec3, returning the rotated vec3.
-
#multiply_vec3!(rhs) ⇒ Object
Calls #multiply_vec3(rhs, rhs).
-
#negate(*args) ⇒ Object
(also: #-@)
Negates this vector or quaternions’s components and returns the result.
-
#negate! ⇒ Object
Calls #negate(self).
-
#normalize(*args) ⇒ Object
Returns a normalized Vec4 or Quat, depending on the type of the receiver and output.
-
#normalize! ⇒ Object
Calls #normalize(self).
-
#scale(*args) ⇒ Object
Scales this vector or quaternion’s components by a scalar value and returns the result.
-
#scale!(rhs) ⇒ Object
Calls #scale(rhs, self).
-
#set(*args) ⇒ Object
Sets the Quat’s components.
-
#size ⇒ Object
Returns the length in bytes of the Quat.
-
#slerp(*args) ⇒ Object
Returns a quaternion interpolated between self and destination using spherical linear interpolation.
-
#slerp!(destination, alpha) ⇒ Object
Calls #slerp(destination, alpha, self).
-
#store ⇒ Object
(also: #[]=)
Sets the Quat’s component at the index to the value.
-
#subtract(*args) ⇒ Object
(also: #-)
Subtracts another vector or quaternion’s components from this vector’s and returns the result.
-
#subtract!(rhs) ⇒ Object
Calls #subtract(rhs, self).
- #to_mat3 ⇒ Object
- #to_mat4 ⇒ Object
- #to_quat ⇒ Object
-
#to_s ⇒ Object
Returns a string representation of self.
- #to_vec2 ⇒ Object
- #to_vec3 ⇒ Object
- #to_vec4 ⇒ Object
-
#w ⇒ Object
Returns the W component of the quaternion.
-
#w=(value) ⇒ Object
Sets the W component of the quaternion.
-
#x ⇒ Object
Returns the X component of the quaternion.
-
#x=(value) ⇒ Object
Sets the X component of the quaternion.
-
#y ⇒ Object
Returns the Y component of the quaternion.
-
#y=(value) ⇒ Object
Sets the Y component of the quaternion.
-
#z ⇒ Object
Returns the Z component of the quaternion.
-
#z=(value) ⇒ Object
Sets the Z component of the quaternion.
Methods included from SwizzleSupport
#__under_method_missing__, #method_missing
Methods included from BaseMarshalSupport
Methods included from InspectSupport
Methods included from ArraySupport
Methods included from FiddlePointerSupport
Constructor Details
#initialize(*args) ⇒ Object
Sets the Quat’s components.
call-seq:
set(x, y, z, w = 1) -> new quaternion with components [x, y, z, w]
set([x, y, z, w]) -> new quaternion with components [x, y, z, w]
set(quat) -> copy of quat
set(vec2) -> new quaternion with the components [vec2.xy, 0, 1]
set(vec3) -> new quaternion with the components [vec3.xyz, 1]
set(vec4) -> new quaternion with the components of vec4
set(mat3) -> new quaternion from mat3
set(mat4) -> new quaternion from mat4
3983 3984 3985 3986 3987 3988 3989 3990 3991 3992 3993 3994 3995 3996 3997 3998 3999 4000 4001 4002 4003 4004 4005 4006 4007 4008 4009 4010 4011 4012 4013 4014 4015 4016 4017 4018 4019 4020 4021 4022 4023 4024 4025 4026 4027 4028 4029 4030 4031 4032 4033 4034 4035 4036 4037 4038 4039 4040 4041 4042 4043 4044 4045 4046 4047 4048 4049 4050 4051 4052 4053 4054 4055 4056 4057 4058 4059 4060 4061 4062 4063 4064 4065 4066 |
# File 'ext/snow-math/snow-math.c', line 3983
static VALUE sm_quat_init(int argc, VALUE *argv, VALUE sm_self)
{
quat_t *self = sm_unwrap_quat(sm_self, NULL);
size_t arr_index = 0;
rb_check_frozen(sm_self);
switch(argc) {
/* Default value */
case 0: { break; }
/* Copy or by-array */
case 1: {
if (SM_IS_A(argv[0], quat) ||
SM_IS_A(argv[0], vec4)) {
sm_unwrap_quat(argv[0], *self);
break;
}
if (SM_IS_A(argv[0], vec2)) {
sm_unwrap_vec2(argv[0], *self);
self[0][2] = s_float_lit(0.0);
self[0][3] = s_float_lit(1.0);
break;
}
if (SM_IS_A(argv[0], vec3)) {
sm_unwrap_vec3(argv[0], *self);
self[0][3] = s_float_lit(1.0);
break;
}
if (SM_IS_A(argv[0], mat4)) {
const mat4_t *mat = sm_unwrap_mat4(argv[0], NULL);
quat_from_mat4(*mat, *self);
break;
}
if (SM_IS_A(argv[0], mat3)) {
const mat3_t *mat = sm_unwrap_mat3(argv[0], NULL);
quat_from_mat3(*mat, *self);
break;
}
/* Optional offset into array provided */
if (0) {
case 2:
arr_index = NUM2SIZET(argv[1]);
}
/* Array of values */
if (SM_RB_IS_A(argv[0], rb_cArray)) {
VALUE arrdata = argv[0];
const size_t arr_end = arr_index + 3;
s_float_t *vec_elem = *self;
for (; arr_index < arr_end; ++arr_index, ++vec_elem) {
*vec_elem = (s_float_t)NUM2DBL(rb_ary_entry(arrdata, (long)arr_index));
}
break;
}
rb_raise(rb_eArgError, "Expected either an array of Numerics or a Quat");
break;
}
/* W */
case 4: {
self[0][3] = (s_float_t)NUM2DBL(argv[3]);
case 3: /* X, Y, Z */
self[0][0] = (s_float_t)NUM2DBL(argv[0]);
self[0][1] = (s_float_t)NUM2DBL(argv[1]);
self[0][2] = (s_float_t)NUM2DBL(argv[2]);
break;
}
default: {
rb_raise(rb_eArgError, "Invalid arguments to initialize/set");
break;
}
} /* switch (argc) */
return sm_self;
}
|
Dynamic Method Handling
This class handles dynamic methods through the method_missing method in the class Snow::SwizzleSupport
Class Method Details
.angle_axis(*args) ⇒ Object
Returns a quaternion describing a rotation around a given axis.
call-seq:
angle_axis(angle_degrees, axis_vec3, output = nil) -> output or new quat
4097 4098 4099 4100 4101 4102 4103 4104 4105 4106 4107 4108 4109 4110 4111 4112 4113 4114 4115 4116 4117 4118 4119 4120 4121 4122 4123 4124 4125 4126 4127 4128 |
# File 'ext/snow-math/snow-math.c', line 4097
static VALUE sm_quat_angle_axis(int argc, VALUE *argv, VALUE self)
{
VALUE sm_angle;
VALUE sm_axis;
VALUE sm_out;
s_float_t angle;
const vec3_t *axis;
rb_scan_args(argc, argv, "21", &sm_angle, &sm_axis, &sm_out);
if (!SM_IS_A(sm_axis, vec3) && !SM_IS_A(sm_axis, vec4) && !SM_IS_A(sm_axis, quat)) {
rb_raise(rb_eTypeError,
kSM_WANT_THREE_OR_FOUR_FORMAT_LIT,
rb_obj_classname(sm_axis));
return Qnil;
}
angle = (s_float_t)NUM2DBL(sm_angle);
axis = sm_unwrap_vec3(sm_axis, NULL);
if (SM_IS_A(sm_out, quat) || SM_IS_A(sm_out, vec4)) {
rb_check_frozen(sm_out);
quat_t *out = sm_unwrap_quat(sm_out, NULL);
quat_from_angle_axis(angle, (*axis)[0], (*axis)[1], (*axis)[2], *out);
} else {
quat_t out;
quat_from_angle_axis(angle, (*axis)[0], (*axis)[1], (*axis)[2], out);
sm_out = sm_wrap_quat(out, self);
rb_obj_call_init(sm_out, 0, 0);
}
return sm_out;
}
|
.new(*args) ⇒ Object Also known as: []
Allocates a new Quat.
call-seq:
new() -> new identity quaternion
new(x, y, z, w = 1) -> new quaternion with components [x, y, z, w]
new([x, y, z, w]) -> new quaternion with components [x, y, z, w]
new(quat) -> copy of quat
new(vec3) -> new quaternion with the components [vec3.xyz, 1]
new(vec4) -> new quaternion with the components of vec4
new(mat3) -> new quaternion from mat3
new(mat4) -> new quaternion from mat4
3961 3962 3963 3964 3965 3966 |
# File 'ext/snow-math/snow-math.c', line 3961
static VALUE sm_quat_new(int argc, VALUE *argv, VALUE self)
{
VALUE sm_quat = sm_wrap_quat(g_quat_identity, self);
rb_obj_call_init(sm_quat, argc, argv);
return sm_quat;
}
|
Instance Method Details
#==(sm_other) ⇒ Object
Tests this Vec4 or Quat and another Vec4 or Quat for equivalency.
call-seq:
quat == other_quat -> bool
vec4 == other_vec4 -> bool
quat == vec4 -> bool
vec4 == quat -> bool
3700 3701 3702 3703 3704 3705 3706 3707 |
# File 'ext/snow-math/snow-math.c', line 3700
static VALUE sm_vec4_equals(VALUE sm_self, VALUE sm_other)
{
if (!RTEST(sm_other) || (!SM_IS_A(sm_other, vec4) && !SM_IS_A(sm_other, quat))) {
return Qfalse;
}
return vec4_equals(*sm_unwrap_vec4(sm_self, NULL), *sm_unwrap_vec4(sm_other, NULL)) ? Qtrue : Qfalse;
}
|
#add(*args) ⇒ Object Also known as: +
Adds this and another vector or quaternion’s components together and returns the result. The result type is that of the receiver.
call-seq:
add(vec4, output = nil) -> output or new vec4 or quat
3356 3357 3358 3359 3360 3361 3362 3363 3364 3365 3366 3367 3368 3369 3370 3371 3372 3373 3374 3375 3376 3377 3378 3379 3380 3381 3382 3383 3384 3385 3386 3387 3388 3389 3390 3391 3392 3393 3394 3395 |
# File 'ext/snow-math/snow-math.c', line 3356
static VALUE sm_vec4_add(int argc, VALUE *argv, VALUE sm_self)
{
VALUE sm_rhs;
VALUE sm_out;
vec4_t *self;
vec4_t *rhs;
rb_scan_args(argc, argv, "11", &sm_rhs, &sm_out);
self = sm_unwrap_vec4(sm_self, NULL);
if (!SM_IS_A(sm_rhs, vec4) && !SM_IS_A(sm_rhs, quat)) {
rb_raise(rb_eTypeError,
kSM_WANT_FOUR_FORMAT_LIT,
rb_obj_classname(sm_rhs));
return Qnil;
}
rhs = sm_unwrap_vec4(sm_rhs, NULL);
if (argc == 2) {
if (!RTEST(sm_out)) {
goto SM_LABEL(skip_output);
}{
vec4_t *output;
if (!SM_IS_A(sm_rhs, vec4) && !SM_IS_A(sm_rhs, quat)) {
rb_raise(rb_eTypeError,
kSM_WANT_FOUR_FORMAT_LIT,
rb_obj_classname(sm_rhs));
return Qnil;
}
rb_check_frozen(sm_out);
output = sm_unwrap_vec4(sm_out, NULL);
vec4_add(*self, *rhs, *output);
}} else if (argc == 1) {
SM_LABEL(skip_output): {
vec4_t output;
vec4_add(*self, *rhs, output);
sm_out = sm_wrap_vec4(output, rb_obj_class(sm_self));
rb_obj_call_init(sm_out, 0, 0);
}} else {
rb_raise(rb_eArgError, "Invalid number of arguments to add");
}
return sm_out;
}
|
#add!(rhs) ⇒ Object
Calls #add(rhs, self)
call-seq: add!(rhs) -> self
193 194 195 |
# File 'lib/snow-math/quat.rb', line 193 def add!(rhs) add rhs, self end |
#address ⇒ Object
Returns the memory address of the object.
call-seq: address -> fixnum
6739 6740 6741 6742 6743 6744 |
# File 'ext/snow-math/snow-math.c', line 6739
static VALUE sm_get_address(VALUE sm_self)
{
void *data_ptr = NULL;
Data_Get_Struct(sm_self, void, data_ptr);
return ULL2NUM((unsigned long long)data_ptr);
}
|
#copy(*args) ⇒ Object Also known as: dup, clone
Returns a copy of self.
call-seq:
copy(output = nil) -> output or new vec4 / quat
3046 3047 3048 3049 3050 3051 3052 3053 3054 3055 3056 3057 3058 3059 3060 3061 3062 3063 3064 3065 3066 3067 3068 3069 3070 3071 3072 3073 3074 3075 3076 |
# File 'ext/snow-math/snow-math.c', line 3046
static VALUE sm_vec4_copy(int argc, VALUE *argv, VALUE sm_self)
{
VALUE sm_out;
vec4_t *self;
rb_scan_args(argc, argv, "01", &sm_out);
self = sm_unwrap_vec4(sm_self, NULL);
if (argc == 1) {
if (!RTEST(sm_out)) {
goto SM_LABEL(skip_output);
}{
vec4_t *output;
if (!SM_IS_A(sm_out, vec4) && !SM_IS_A(sm_out, quat)) {
rb_raise(rb_eTypeError,
kSM_WANT_FOUR_FORMAT_LIT,
rb_obj_classname(sm_out));
return Qnil;
}
rb_check_frozen(sm_out);
output = sm_unwrap_vec4(sm_out, NULL);
vec4_copy (*self, *output);
}} else if (argc == 0) {
SM_LABEL(skip_output): {
vec4_t output;
vec4_copy (*self, output);
sm_out = sm_wrap_vec4(output, rb_obj_class(sm_self));
rb_obj_call_init(sm_out, 0, 0);
}} else {
rb_raise(rb_eArgError, "Invalid number of arguments to copy");
}
return sm_out;
}
|
#divide(*args) ⇒ Object Also known as: /
Divides this vector or quaternion’s components by a scalar value and returns the result. The return type is that of the receiver.
call-seq:
divide(scalar, output = nil) -> output or new vec4
3666 3667 3668 3669 3670 3671 3672 3673 3674 3675 3676 3677 3678 3679 3680 3681 3682 3683 3684 3685 3686 3687 |
# File 'ext/snow-math/snow-math.c', line 3666
static VALUE sm_vec4_divide(int argc, VALUE *argv, VALUE sm_self)
{
VALUE sm_out;
VALUE sm_scalar;
s_float_t scalar;
vec4_t *self = sm_unwrap_vec4(sm_self, NULL);
rb_scan_args(argc, argv, "11", &sm_scalar, &sm_out);
scalar = NUM2DBL(sm_scalar);
if ((SM_IS_A(sm_out, vec4) || SM_IS_A(sm_out, quat))) {
rb_check_frozen(sm_out);
vec4_divide(*self, scalar, *sm_unwrap_vec4(sm_out, NULL));
} else {
vec4_t out;
vec4_divide(*self, scalar, out);
sm_out = sm_wrap_vec4(out, rb_obj_class(sm_self));
rb_obj_call_init(sm_out, 0, 0);
}
return sm_out;
}
|
#divide!(rhs) ⇒ Object
Calls #divide(rhs, self)
call-seq: divide!(rhs) -> self
214 215 216 |
# File 'lib/snow-math/quat.rb', line 214 def divide!(rhs) divide rhs, self end |
#dot_product(sm_other) ⇒ Object Also known as: **
Returns the dot product of self and another Vec4 or Quat.
call-seq:
dot_product(vec4) -> float
dot_product(quat) -> float
3457 3458 3459 3460 3461 3462 3463 3464 3465 3466 3467 3468 3469 3470 |
# File 'ext/snow-math/snow-math.c', line 3457
static VALUE sm_vec4_dot_product(VALUE sm_self, VALUE sm_other)
{
if (!SM_IS_A(sm_other, vec4) &&
!SM_IS_A(sm_other, quat)) {
rb_raise(rb_eArgError,
kSM_WANT_FOUR_FORMAT_LIT,
rb_obj_classname(sm_other));
return Qnil;
}
return DBL2NUM(
vec4_dot_product(
*sm_unwrap_vec4(sm_self, NULL),
*sm_unwrap_vec4(sm_other, NULL)));
}
|
#fetch ⇒ Object Also known as: []
Gets the component of the Quat at the given index.
call-seq: fetch(index) -> float
3748 3749 3750 3751 3752 3753 3754 3755 3756 3757 3758 |
# File 'ext/snow-math/snow-math.c', line 3748
static VALUE sm_quat_fetch (VALUE sm_self, VALUE sm_index)
{
static const int max_index = sizeof(quat_t) / sizeof(s_float_t);
const quat_t *self = sm_unwrap_quat(sm_self, NULL);
int index = NUM2INT(sm_index);
if (index < 0 || index >= max_index) {
rb_raise(rb_eRangeError,
"Index %d is out of bounds, must be from 0 through %d", index, max_index - 1);
}
return DBL2NUM(self[0][NUM2INT(sm_index)]);
}
|
#inverse(*args) ⇒ Object Also known as: ~
Returns the inverse of this Quat. Note that this is not the same as the inverse of, for example, a Vec4.
call-seq:
inverse(output = nil) -> output or new quat
3816 3817 3818 3819 3820 3821 3822 3823 3824 3825 3826 3827 3828 3829 3830 3831 3832 3833 3834 3835 3836 3837 3838 3839 3840 3841 3842 3843 3844 3845 3846 |
# File 'ext/snow-math/snow-math.c', line 3816
static VALUE sm_quat_inverse(int argc, VALUE *argv, VALUE sm_self)
{
VALUE sm_out;
quat_t *self;
rb_scan_args(argc, argv, "01", &sm_out);
self = sm_unwrap_quat(sm_self, NULL);
if (argc == 1) {
if (!RTEST(sm_out)) {
goto SM_LABEL(skip_output);
}{
quat_t *output;
if (!SM_IS_A(sm_out, vec4) && !SM_IS_A(sm_out, quat)) {
rb_raise(rb_eTypeError,
kSM_WANT_FOUR_FORMAT_LIT,
rb_obj_classname(sm_out));
return Qnil;
}
rb_check_frozen(sm_out);
output = sm_unwrap_quat(sm_out, NULL);
quat_inverse (*self, *output);
}} else if (argc == 0) {
SM_LABEL(skip_output): {
quat_t output;
quat_inverse (*self, output);
sm_out = sm_wrap_quat(output, rb_obj_class(sm_self));
rb_obj_call_init(sm_out, 0, 0);
}} else {
rb_raise(rb_eArgError, "Invalid number of arguments to inverse");
}
return sm_out;
}
|
#inverse! ⇒ Object
Calls #inverse(self)
call-seq: inverse! -> self
136 137 138 |
# File 'lib/snow-math/quat.rb', line 136 def inverse! inverse self end |
#length ⇒ Object
Returns the length of the Quat in components. Result is always 4.
call-seq: length -> fixnum
3802 3803 3804 3805 |
# File 'ext/snow-math/snow-math.c', line 3802
static VALUE sm_quat_length (VALUE self)
{
return SIZET2NUM(sizeof(quat_t) / sizeof(s_float_t));
}
|
#load_identity ⇒ Object
Sets self to the identity quaternion.
call-seq:
load_identity -> self
4138 4139 4140 4141 4142 4143 |
# File 'ext/snow-math/snow-math.c', line 4138
static VALUE sm_quat_identity(VALUE sm_self)
{
quat_t *self = sm_unwrap_quat(sm_self, NULL);
quat_identity(*self);
return sm_self;
}
|
#magnitude ⇒ Object
Returns the magnitude of self.
call-seq:
magnitude -> float
3620 3621 3622 3623 |
# File 'ext/snow-math/snow-math.c', line 3620
static VALUE sm_vec4_magnitude(VALUE sm_self)
{
return DBL2NUM(vec4_length(*sm_unwrap_vec4(sm_self, NULL)));
}
|
#magnitude_squared ⇒ Object
Returns the squared magnitude of self.
call-seq:
magnitude_squared -> float
3607 3608 3609 3610 |
# File 'ext/snow-math/snow-math.c', line 3607
static VALUE sm_vec4_magnitude_squared(VALUE sm_self)
{
return DBL2NUM(vec4_length_squared(*sm_unwrap_vec4(sm_self, NULL)));
}
|
#multiply(rhs, output = nil) ⇒ Object Also known as: *
Wrapper around #multiply_quat, #multiply_vec3, and #scale respectively.
call-seq:
multiply(quat, output = nil) -> output or new quat
multiply(scalar, output = nil) -> output or new quat
multiply(vec3, output = nil) -> output or new vec3
167 168 169 170 171 172 173 174 |
# File 'lib/snow-math/quat.rb', line 167 def multiply(rhs, output = nil) case rhs when ::Snow::Quat then multiply_quat(rhs, output) when ::Snow::Vec3 then multiply_vec3(rhs, output) when Numeric then scale(rhs, output) else raise TypeError, "Invalid type for RHS" end end |
#multiply!(rhs) ⇒ Object
Calls #multiply(rhs, self) for scaling and Quat multiplication, otherwise calls #multiply(rhs, rhs) for Vec3 multiplication.
call-seq:
multiply!(quat) -> self
multiply!(scalar) -> self
multiply!(vec3) -> vec3
183 184 185 186 187 188 |
# File 'lib/snow-math/quat.rb', line 183 def multiply!(rhs) case rhs when ::Snow::Vec3 then multiply(rhs, rhs) else multiply(rhs, self) end end |
#multiply_quat(*args) ⇒ Object
Concatenates this quaternion and another and returns the result.
call-seq:
multiply_quat(quat, output = nil) -> output or new quat
3856 3857 3858 3859 3860 3861 3862 3863 3864 3865 3866 3867 3868 3869 3870 3871 3872 3873 3874 3875 3876 3877 3878 3879 3880 3881 3882 3883 3884 3885 3886 3887 3888 3889 3890 3891 3892 3893 3894 3895 |
# File 'ext/snow-math/snow-math.c', line 3856
static VALUE sm_quat_multiply(int argc, VALUE *argv, VALUE sm_self)
{
VALUE sm_rhs;
VALUE sm_out;
quat_t *self;
quat_t *rhs;
rb_scan_args(argc, argv, "11", &sm_rhs, &sm_out);
self = sm_unwrap_quat(sm_self, NULL);
if (!!SM_IS_A(sm_rhs, vec4) && !SM_IS_A(sm_rhs, quat)) {
rb_raise(rb_eTypeError,
kSM_WANT_FOUR_FORMAT_LIT,
rb_obj_classname(sm_rhs));
return Qnil;
}
rhs = sm_unwrap_quat(sm_rhs, NULL);
if (argc == 2) {
if (!RTEST(sm_out)) {
goto SM_LABEL(skip_output);
}{
quat_t *output;
if (!!SM_IS_A(sm_out, vec4) && !SM_IS_A(sm_out, quat)) {
rb_raise(rb_eTypeError,
kSM_WANT_FOUR_FORMAT_LIT,
rb_obj_classname(sm_out));
return Qnil;
}
rb_check_frozen(sm_out);
output = sm_unwrap_quat(sm_out, NULL);
quat_multiply(*self, *rhs, *output);
}} else if (argc == 1) {
SM_LABEL(skip_output): {
quat_t output;
quat_multiply(*self, *rhs, output);
sm_out = sm_wrap_quat(output, rb_obj_class(sm_self));
rb_obj_call_init(sm_out, 0, 0);
}} else {
rb_raise(rb_eArgError, "Invalid number of arguments to multiply_quat");
}
return sm_out;
}
|
#multiply_quat!(rhs) ⇒ Object
Calls #multiply_quat(rhs, self)
call-seq: multiply_quat!(rhs) -> self
150 151 152 |
# File 'lib/snow-math/quat.rb', line 150 def multiply_quat!(rhs) multiply_quat rhs, self end |
#multiply_vec3(*args) ⇒ Object
Multiplies a quaternion and vec3, returning the rotated vec3.
call-seq:
multiply_vec3(quat, output = nil) -> output or new quat
3905 3906 3907 3908 3909 3910 3911 3912 3913 3914 3915 3916 3917 3918 3919 3920 3921 3922 3923 3924 3925 3926 3927 3928 3929 3930 3931 3932 3933 3934 3935 3936 3937 3938 3939 3940 3941 3942 3943 3944 |
# File 'ext/snow-math/snow-math.c', line 3905
static VALUE sm_quat_multiply_vec3(int argc, VALUE *argv, VALUE sm_self)
{
VALUE sm_rhs;
VALUE sm_out;
quat_t *self;
vec3_t *rhs;
rb_scan_args(argc, argv, "11", &sm_rhs, &sm_out);
self = sm_unwrap_quat(sm_self, NULL);
if (!SM_IS_A(sm_rhs, vec3) && !SM_IS_A(sm_rhs, vec4) && !SM_IS_A(sm_rhs, quat)) {
rb_raise(rb_eTypeError,
kSM_WANT_THREE_OR_FOUR_FORMAT_LIT,
rb_obj_classname(sm_rhs));
return Qnil;
}
rhs = sm_unwrap_vec3(sm_rhs, NULL);
if (argc == 2) {
if (!RTEST(sm_out)) {
goto SM_LABEL(skip_output);
}{
vec3_t *output;
if (!SM_IS_A(sm_out, vec3) && !SM_IS_A(sm_out, vec4) && !SM_IS_A(sm_out, quat)) {
rb_raise(rb_eTypeError,
kSM_WANT_THREE_OR_FOUR_FORMAT_LIT,
rb_obj_classname(sm_out));
return Qnil;
}
rb_check_frozen(sm_out);
output = sm_unwrap_vec3(sm_out, NULL);
quat_multiply_vec3(*self, *rhs, *output);
}} else if (argc == 1) {
SM_LABEL(skip_output): {
vec3_t output;
quat_multiply_vec3(*self, *rhs, output);
sm_out = sm_wrap_vec3(output, rb_obj_class(sm_rhs));
rb_obj_call_init(sm_out, 0, 0);
}} else {
rb_raise(rb_eArgError, "Invalid number of arguments to multiply_vec3");
}
return sm_out;
}
|
#multiply_vec3!(rhs) ⇒ Object
Calls #multiply_vec3(rhs, rhs)
call-seq: multiply_vec3!(rhs) -> rhs
157 158 159 |
# File 'lib/snow-math/quat.rb', line 157 def multiply_vec3!(rhs) multiply_vec3 rhs, rhs end |
#negate(*args) ⇒ Object Also known as: -@
Negates this vector or quaternions’s components and returns the result.
call-seq:
negate(output = nil) -> output or new vec4 or quat
3167 3168 3169 3170 3171 3172 3173 3174 3175 3176 3177 3178 3179 3180 3181 3182 3183 3184 3185 3186 3187 3188 3189 3190 3191 3192 3193 3194 3195 3196 3197 |
# File 'ext/snow-math/snow-math.c', line 3167
static VALUE sm_vec4_negate(int argc, VALUE *argv, VALUE sm_self)
{
VALUE sm_out;
vec4_t *self;
rb_scan_args(argc, argv, "01", &sm_out);
self = sm_unwrap_vec4(sm_self, NULL);
if (argc == 1) {
if (!RTEST(sm_out)) {
goto SM_LABEL(skip_output);
}{
vec4_t *output;
if (!SM_IS_A(sm_out, vec4) && !SM_IS_A(sm_out, quat)) {
rb_raise(rb_eTypeError,
kSM_WANT_FOUR_FORMAT_LIT,
rb_obj_classname(sm_out));
return Qnil;
}
rb_check_frozen(sm_out);
output = sm_unwrap_vec4(sm_out, NULL);
vec4_negate (*self, *output);
}} else if (argc == 0) {
SM_LABEL(skip_output): {
vec4_t output;
vec4_negate (*self, output);
sm_out = sm_wrap_vec4(output, rb_obj_class(sm_self));
rb_obj_call_init(sm_out, 0, 0);
}} else {
rb_raise(rb_eArgError, "Invalid number of arguments to negate");
}
return sm_out;
}
|
#negate! ⇒ Object
Calls #negate(self)
call-seq: negate! -> self
143 144 145 |
# File 'lib/snow-math/quat.rb', line 143 def negate! negate self end |
#normalize(*args) ⇒ Object
Returns a normalized Vec4 or Quat, depending on the type of the receiver and output.
call-seq:
normalize(output = nil) -> output or new vec4 / quat
3087 3088 3089 3090 3091 3092 3093 3094 3095 3096 3097 3098 3099 3100 3101 3102 3103 3104 3105 3106 3107 3108 3109 3110 3111 3112 3113 3114 3115 3116 |
# File 'ext/snow-math/snow-math.c', line 3087
static VALUE sm_vec4_normalize(int argc, VALUE *argv, VALUE sm_self)
{
VALUE sm_out;
vec4_t *self;
rb_scan_args(argc, argv, "01", &sm_out);
self = sm_unwrap_vec4(sm_self, NULL);
if (argc == 1) {
if (!RTEST(sm_out)) {
goto SM_LABEL(skip_output);
}{
vec4_t *output;
if (!SM_IS_A(sm_out, vec4) && !SM_IS_A(sm_out, quat)) {
rb_raise(rb_eTypeError,
kSM_WANT_FOUR_FORMAT_LIT,
rb_obj_classname(sm_out));
}
rb_check_frozen(sm_out);
output = sm_unwrap_vec4(sm_out, NULL);
vec4_normalize (*self, *output);
}} else if (argc == 0) {
SM_LABEL(skip_output): {
vec4_t output;
vec4_normalize (*self, output);
sm_out = sm_wrap_vec4(output, rb_obj_class(sm_self));
rb_obj_call_init(sm_out, 0, 0);
}} else {
rb_raise(rb_eArgError, "Invalid number of arguments to normalize");
}
return sm_out;
}
|
#normalize! ⇒ Object
Calls #normalize(self)
call-seq: normalize! -> self
129 130 131 |
# File 'lib/snow-math/quat.rb', line 129 def normalize! normalize self end |
#scale(*args) ⇒ Object
Scales this vector or quaternion’s components by a scalar value and returns the result. The return type is that of the receiver.
call-seq:
scale(scalar, output = nil) -> output or new vec4
3634 3635 3636 3637 3638 3639 3640 3641 3642 3643 3644 3645 3646 3647 3648 3649 3650 3651 3652 3653 3654 3655 |
# File 'ext/snow-math/snow-math.c', line 3634
static VALUE sm_vec4_scale(int argc, VALUE *argv, VALUE sm_self)
{
VALUE sm_out;
VALUE sm_scalar;
s_float_t scalar;
vec4_t *self = sm_unwrap_vec4(sm_self, NULL);
rb_scan_args(argc, argv, "11", &sm_scalar, &sm_out);
scalar = NUM2DBL(sm_scalar);
if ((SM_IS_A(sm_out, vec4) || SM_IS_A(sm_out, quat))) {
rb_check_frozen(sm_out);
vec4_scale(*self, scalar, *sm_unwrap_vec4(sm_out, NULL));
} else {
vec4_t out;
vec4_scale(*self, scalar, out);
sm_out = sm_wrap_vec4(out, rb_obj_class(sm_self));
rb_obj_call_init(sm_out, 0, 0);
}
return sm_out;
}
|
#scale!(rhs) ⇒ Object
Calls #scale(rhs, self)
call-seq: scale!(rhs) -> self
207 208 209 |
# File 'lib/snow-math/quat.rb', line 207 def scale!(rhs) scale rhs, self end |
#set(*args) ⇒ Object
Sets the Quat’s components.
call-seq:
set(x, y, z, w = 1) -> new quaternion with components [x, y, z, w]
set([x, y, z, w]) -> new quaternion with components [x, y, z, w]
set(quat) -> copy of quat
set(vec2) -> new quaternion with the components [vec2.xy, 0, 1]
set(vec3) -> new quaternion with the components [vec3.xyz, 1]
set(vec4) -> new quaternion with the components of vec4
set(mat3) -> new quaternion from mat3
set(mat4) -> new quaternion from mat4
3983 3984 3985 3986 3987 3988 3989 3990 3991 3992 3993 3994 3995 3996 3997 3998 3999 4000 4001 4002 4003 4004 4005 4006 4007 4008 4009 4010 4011 4012 4013 4014 4015 4016 4017 4018 4019 4020 4021 4022 4023 4024 4025 4026 4027 4028 4029 4030 4031 4032 4033 4034 4035 4036 4037 4038 4039 4040 4041 4042 4043 4044 4045 4046 4047 4048 4049 4050 4051 4052 4053 4054 4055 4056 4057 4058 4059 4060 4061 4062 4063 4064 4065 4066 |
# File 'ext/snow-math/snow-math.c', line 3983
static VALUE sm_quat_init(int argc, VALUE *argv, VALUE sm_self)
{
quat_t *self = sm_unwrap_quat(sm_self, NULL);
size_t arr_index = 0;
rb_check_frozen(sm_self);
switch(argc) {
/* Default value */
case 0: { break; }
/* Copy or by-array */
case 1: {
if (SM_IS_A(argv[0], quat) ||
SM_IS_A(argv[0], vec4)) {
sm_unwrap_quat(argv[0], *self);
break;
}
if (SM_IS_A(argv[0], vec2)) {
sm_unwrap_vec2(argv[0], *self);
self[0][2] = s_float_lit(0.0);
self[0][3] = s_float_lit(1.0);
break;
}
if (SM_IS_A(argv[0], vec3)) {
sm_unwrap_vec3(argv[0], *self);
self[0][3] = s_float_lit(1.0);
break;
}
if (SM_IS_A(argv[0], mat4)) {
const mat4_t *mat = sm_unwrap_mat4(argv[0], NULL);
quat_from_mat4(*mat, *self);
break;
}
if (SM_IS_A(argv[0], mat3)) {
const mat3_t *mat = sm_unwrap_mat3(argv[0], NULL);
quat_from_mat3(*mat, *self);
break;
}
/* Optional offset into array provided */
if (0) {
case 2:
arr_index = NUM2SIZET(argv[1]);
}
/* Array of values */
if (SM_RB_IS_A(argv[0], rb_cArray)) {
VALUE arrdata = argv[0];
const size_t arr_end = arr_index + 3;
s_float_t *vec_elem = *self;
for (; arr_index < arr_end; ++arr_index, ++vec_elem) {
*vec_elem = (s_float_t)NUM2DBL(rb_ary_entry(arrdata, (long)arr_index));
}
break;
}
rb_raise(rb_eArgError, "Expected either an array of Numerics or a Quat");
break;
}
/* W */
case 4: {
self[0][3] = (s_float_t)NUM2DBL(argv[3]);
case 3: /* X, Y, Z */
self[0][0] = (s_float_t)NUM2DBL(argv[0]);
self[0][1] = (s_float_t)NUM2DBL(argv[1]);
self[0][2] = (s_float_t)NUM2DBL(argv[2]);
break;
}
default: {
rb_raise(rb_eArgError, "Invalid arguments to initialize/set");
break;
}
} /* switch (argc) */
return sm_self;
}
|
#size ⇒ Object
Returns the length in bytes of the Quat. When compiled to use doubles as the base type, this is always 32. Otherwise, when compiled to use floats, it’s always 16.
call-seq: size -> fixnum
3790 3791 3792 3793 |
# File 'ext/snow-math/snow-math.c', line 3790
static VALUE sm_quat_size (VALUE self)
{
return SIZET2NUM(sizeof(quat_t));
}
|
#slerp(*args) ⇒ Object
Returns a quaternion interpolated between self and destination using spherical linear interpolation. Alpha is the interpolation value and must be clamped from 0 to 1.
call-seq:
slerp(destination, alpha, output = nil) -> output or new quat
4155 4156 4157 4158 4159 4160 4161 4162 4163 4164 4165 4166 4167 4168 4169 4170 4171 4172 4173 4174 4175 4176 4177 4178 4179 4180 4181 4182 4183 4184 4185 4186 4187 |
# File 'ext/snow-math/snow-math.c', line 4155
static VALUE sm_quat_slerp(int argc, VALUE *argv, VALUE sm_self)
{
VALUE sm_out;
VALUE sm_destination;
VALUE sm_alpha;
quat_t *destination;
quat_t *self = sm_unwrap_vec4(sm_self, NULL);
s_float_t alpha;
rb_scan_args(argc, argv, "21", &sm_destination, &sm_alpha, &sm_out);
alpha = NUM2DBL(sm_alpha);
if (!SM_IS_A(sm_destination, vec4) && !SM_IS_A(sm_destination, quat)) {
rb_raise(rb_eTypeError,
kSM_WANT_FOUR_FORMAT_LIT,
rb_obj_classname(sm_destination));
return Qnil;
}
destination = sm_unwrap_quat(sm_destination, NULL);
if ((SM_IS_A(sm_out, vec4) || SM_IS_A(sm_out, quat))) {
rb_check_frozen(sm_out);
quat_slerp(*self, *destination, alpha, *sm_unwrap_quat(sm_out, NULL));
} else {
quat_t out;
quat_slerp(*self, *destination, alpha, out);
sm_out = sm_wrap_quat(out, rb_obj_class(sm_self));
rb_obj_call_init(sm_out, 0, 0);
}
return sm_out;
}
|
#slerp!(destination, alpha) ⇒ Object
Calls #slerp(destination, alpha, self)
call-seq: slerp!(destination, alpha) -> self
221 222 223 |
# File 'lib/snow-math/quat.rb', line 221 def slerp!(destination, alpha) slerp(destination, alpha, self) end |
#store ⇒ Object Also known as: []=
Sets the Quat’s component at the index to the value.
call-seq: store(index, value) -> value
3767 3768 3769 3770 3771 3772 3773 3774 3775 3776 3777 3778 3779 |
# File 'ext/snow-math/snow-math.c', line 3767
static VALUE sm_quat_store (VALUE sm_self, VALUE sm_index, VALUE sm_value)
{
static const int max_index = sizeof(quat_t) / sizeof(s_float_t);
quat_t *self = sm_unwrap_quat(sm_self, NULL);
int index = NUM2INT(sm_index);
rb_check_frozen(sm_self);
if (index < 0 || index >= max_index) {
rb_raise(rb_eRangeError,
"Index %d is out of bounds, must be from 0 through %d", index, max_index - 1);
}
self[0][index] = (s_float_t)NUM2DBL(sm_value);
return sm_value;
}
|
#subtract(*args) ⇒ Object Also known as: -
Subtracts another vector or quaternion’s components from this vector’s and returns the result. The return type is that of the receiver.
call-seq:
subtract(vec4, output = nil) -> output or new vec4
3406 3407 3408 3409 3410 3411 3412 3413 3414 3415 3416 3417 3418 3419 3420 3421 3422 3423 3424 3425 3426 3427 3428 3429 3430 3431 3432 3433 3434 3435 3436 3437 3438 3439 3440 3441 3442 3443 3444 3445 |
# File 'ext/snow-math/snow-math.c', line 3406
static VALUE sm_vec4_subtract(int argc, VALUE *argv, VALUE sm_self)
{
VALUE sm_rhs;
VALUE sm_out;
vec4_t *self;
vec4_t *rhs;
rb_scan_args(argc, argv, "11", &sm_rhs, &sm_out);
self = sm_unwrap_vec4(sm_self, NULL);
if (!SM_IS_A(sm_rhs, vec4) && !SM_IS_A(sm_rhs, quat)) {
rb_raise(rb_eTypeError,
kSM_WANT_FOUR_FORMAT_LIT,
rb_obj_classname(sm_rhs));
return Qnil;
}
rhs = sm_unwrap_vec4(sm_rhs, NULL);
if (argc == 2) {
if (!RTEST(sm_out)) {
goto SM_LABEL(skip_output);
}{
vec4_t *output;
if (!SM_IS_A(sm_rhs, vec4) && !SM_IS_A(sm_rhs, quat)) {
rb_raise(rb_eTypeError,
kSM_WANT_FOUR_FORMAT_LIT,
rb_obj_classname(sm_rhs));
return Qnil;
}
rb_check_frozen(sm_out);
output = sm_unwrap_vec4(sm_out, NULL);
vec4_subtract(*self, *rhs, *output);
}} else if (argc == 1) {
SM_LABEL(skip_output): {
vec4_t output;
vec4_subtract(*self, *rhs, output);
sm_out = sm_wrap_vec4(output, rb_obj_class(sm_self));
rb_obj_call_init(sm_out, 0, 0);
}} else {
rb_raise(rb_eArgError, "Invalid number of arguments to subtract");
}
return sm_out;
}
|
#subtract!(rhs) ⇒ Object
Calls #subtract(rhs, self)
call-seq: subtract!(rhs) -> self
200 201 202 |
# File 'lib/snow-math/quat.rb', line 200 def subtract!(rhs) subtract rhs, self end |
#to_s ⇒ Object
Returns a string representation of self.
Quat[].to_s # => "{ 0.0, 0.0, 0.0, 1.0 }"
call-seq:
to_s -> string
4078 4079 4080 4081 4082 4083 4084 4085 4086 4087 |
# File 'ext/snow-math/snow-math.c', line 4078
static VALUE sm_quat_to_s(VALUE self)
{
const s_float_t *v;
v = (const s_float_t *)*sm_unwrap_quat(self, NULL);
return rb_sprintf(
"{ "
"%f, %f, %f, %f"
" }",
v[0], v[1], v[2], v[3]);
}
|
#w ⇒ Object
Returns the W component of the quaternion.
call-seq: w -> float
115 116 117 |
# File 'lib/snow-math/quat.rb', line 115 def w self[3] end |
#w=(value) ⇒ Object
Sets the W component of the quaternion.
call-seq: w = value -> value
122 123 124 |
# File 'lib/snow-math/quat.rb', line 122 def w=(value) self[3] = value end |
#x ⇒ Object
Returns the X component of the quaternion.
call-seq: x -> float
73 74 75 |
# File 'lib/snow-math/quat.rb', line 73 def x self[0] end |
#x=(value) ⇒ Object
Sets the X component of the quaternion.
call-seq: x = value -> value
80 81 82 |
# File 'lib/snow-math/quat.rb', line 80 def x=(value) self[0] = value end |
#y ⇒ Object
Returns the Y component of the quaternion.
call-seq: y -> float
87 88 89 |
# File 'lib/snow-math/quat.rb', line 87 def y self[1] end |
#y=(value) ⇒ Object
Sets the Y component of the quaternion.
call-seq: y = value -> value
94 95 96 |
# File 'lib/snow-math/quat.rb', line 94 def y=(value) self[1] = value end |
#z ⇒ Object
Returns the Z component of the quaternion.
call-seq: z -> float
101 102 103 |
# File 'lib/snow-math/quat.rb', line 101 def z self[2] end |
#z=(value) ⇒ Object
Sets the Z component of the quaternion.
call-seq: z = value -> value
108 109 110 |
# File 'lib/snow-math/quat.rb', line 108 def z=(value) self[2] = value end |