Module: Statsample::Bivariate
- Defined in:
- lib/statsample/bivariate.rb,
lib/statsample/bivariate/pearson.rb
Overview
Diverse methods and classes to calculate bivariate relations Specific classes:
-
Statsample::Bivariate::Pearson : Pearson correlation coefficient ®
-
Statsample::Bivariate::Tetrachoric : Tetrachoric correlation
-
Statsample::Bivariate::Polychoric : Polychoric correlation (using joint, two-step and polychoric series)
Defined Under Namespace
Classes: Pearson
Class Method Summary collapse
-
.correlation_matrix(ds) ⇒ Object
Correlation matrix.
- .correlation_matrix_optimized(ds) ⇒ Object
- .correlation_matrix_pairwise(ds) ⇒ Object
-
.correlation_probability_matrix(ds, tails = :both) ⇒ Object
Matrix of correlation probabilities.
-
.covariance(v1, v2) ⇒ Object
Covariance between two vectors.
-
.covariance_matrix(ds) ⇒ Object
Covariance matrix.
- .covariance_matrix_optimized(ds) ⇒ Object
- .covariance_matrix_pairwise(ds) ⇒ Object
-
.covariance_slow(v1, v2) ⇒ Object
:nodoc:.
-
.gamma(matrix) ⇒ Object
Calculates Goodman and Kruskal’s gamma.
-
.maximum_likehood_dichotomic(pred, real) ⇒ Object
Estimate the ML between two dichotomic vectors.
-
.min_n_valid(ds) ⇒ Object
Report the minimum number of cases valid of a covariate matrix based on a dataset.
-
.n_valid_matrix(ds) ⇒ Object
Retrieves the n valid pairwise.
- .ordered_pairs(vector) ⇒ Object
-
.pairs(matrix) ⇒ Object
Calculate indexes for a matrix the rows and cols has to be ordered.
-
.partial_correlation(v1, v2, control) ⇒ Object
Correlation between v1 and v2, controling the effect of control on both.
-
.pearson(v1, v2) ⇒ Object
(also: correlation)
Calculate Pearson correlation coefficient ® between 2 vectors.
-
.pearson_slow(v1, v2) ⇒ Object
:nodoc:.
-
.point_biserial(dichotomous, continous) ⇒ Object
Calculate Point biserial correlation.
-
.prediction_optimized(vars, cases) ⇒ Object
Predicted time for optimized correlation matrix, in miliseconds See benchmarks/correlation_matrix.rb to see mode of calculation.
-
.prediction_pairwise(vars, cases) ⇒ Object
Predicted time for pairwise correlation matrix, in miliseconds See benchmarks/correlation_matrix.rb to see mode of calculation.
-
.prop_pearson(t, size, tails = :both) ⇒ Object
Retrieves the probability value (a la SPSS) for a given t, size and number of tails.
-
.residuals(from, del) ⇒ Object
Returns residual score after delete variance from another variable.
-
.spearman(v1, v2) ⇒ Object
Spearman ranked correlation coefficient (rho) between 2 vectors.
- .sum_of_squares(v1, v2) ⇒ Object
-
.t_pearson(v1, v2) ⇒ Object
Retrieves the value for t test for a pearson correlation between two vectors to test the null hipothesis of r=0.
-
.t_r(r, size) ⇒ Object
Retrieves the value for t test for a pearson correlation giving r and vector size Source : faculty.chass.ncsu.edu/garson/PA765/correl.htm.
-
.tau_a(v1, v2) ⇒ Object
Kendall Rank Correlation Coefficient (Tau a) Based on Hervé Adbi article.
-
.tau_b(matrix) ⇒ Object
Calculates Goodman and Kruskal’s Tau b correlation.
Class Method Details
.correlation_matrix(ds) ⇒ Object
Correlation matrix. Order of rows and columns depends on Dataset#fields order
199 200 201 202 203 204 205 206 207 208 209 |
# File 'lib/statsample/bivariate.rb', line 199 def correlation_matrix(ds) vars, cases = ds.ncols, ds.nrows if !ds.include_values?(*Daru::MISSING_VALUES) and Statsample.has_gsl? and prediction_optimized(vars,cases) < prediction_pairwise(vars,cases) cm=correlation_matrix_optimized(ds) else cm=correlation_matrix_pairwise(ds) end cm.extend(Statsample::CovariateMatrix) cm.fields = ds.vectors.to_a cm end |
.correlation_matrix_optimized(ds) ⇒ Object
211 212 213 214 215 216 217 218 219 220 |
# File 'lib/statsample/bivariate.rb', line 211 def correlation_matrix_optimized(ds) s=covariance_matrix_optimized(ds) sds=GSL::Matrix.diagonal(s.diagonal.sqrt.pow(-1)) cm=sds*s*sds # Fix diagonal s.row_size.times {|i| cm[i,i]=1.0 } cm end |
.correlation_matrix_pairwise(ds) ⇒ Object
221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 |
# File 'lib/statsample/bivariate.rb', line 221 def correlation_matrix_pairwise(ds) cache={} vectors = ds.vectors.to_a cm = vectors.collect do |row| vectors.collect do |col| if row==col 1.0 elsif (ds[row].type!=:numeric or ds[col].type!=:numeric) nil else if cache[[col,row]].nil? r=pearson(ds[row],ds[col]) cache[[row,col]]=r r else cache[[col,row]] end end end end Matrix.rows cm end |
.correlation_probability_matrix(ds, tails = :both) ⇒ Object
Matrix of correlation probabilities. Order of rows and columns depends on Dataset#fields order
265 266 267 268 269 270 271 272 273 |
# File 'lib/statsample/bivariate.rb', line 265 def correlation_probability_matrix(ds, tails=:both) rows=ds.fields.collect do |row| ds.fields.collect do |col| v1a,v2a=Statsample.only_valid_clone(ds[row],ds[col]) (row==col or ds[row].type!=:numeric or ds[col].type!=:numeric) ? nil : prop_pearson(t_pearson(ds[row],ds[col]), v1a.size, tails) end end Matrix.rows(rows) end |
.covariance(v1, v2) ⇒ Object
Covariance between two vectors
13 14 15 16 17 18 19 20 21 22 |
# File 'lib/statsample/bivariate.rb', line 13 def covariance(v1,v2) v1a,v2a=Statsample.only_valid_clone(v1,v2) return nil if v1a.size==0 if Statsample.has_gsl? GSL::Stats::covariance(v1a.to_gsl, v2a.to_gsl) else covariance_slow(v1a,v2a) end end |
.covariance_matrix(ds) ⇒ Object
Covariance matrix. Order of rows and columns depends on Dataset#fields order
160 161 162 163 164 165 166 167 168 169 170 |
# File 'lib/statsample/bivariate.rb', line 160 def covariance_matrix(ds) vars,cases = ds.ncols, ds.nrows if !ds.include_values?(*Daru::MISSING_VALUES) and Statsample.has_gsl? and prediction_optimized(vars,cases) < prediction_pairwise(vars,cases) cm=covariance_matrix_optimized(ds) else cm=covariance_matrix_pairwise(ds) end cm.extend(Statsample::CovariateMatrix) cm.fields = ds.vectors.to_a cm end |
.covariance_matrix_optimized(ds) ⇒ Object
146 147 148 149 150 151 152 153 154 155 |
# File 'lib/statsample/bivariate.rb', line 146 def covariance_matrix_optimized(ds) x=ds.to_gsl n=x.row_size m=x.column_size means=((1/n.to_f)*GSL::Matrix.ones(1,n)*x).row(0) centered=x-(GSL::Matrix.ones(n,m)*GSL::Matrix.diag(means)) ss=centered.transpose*centered s=((1/(n-1).to_f))*ss s end |
.covariance_matrix_pairwise(ds) ⇒ Object
173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 |
# File 'lib/statsample/bivariate.rb', line 173 def covariance_matrix_pairwise(ds) cache={} vectors = ds.vectors.to_a mat_rows = vectors.collect do |row| vectors.collect do |col| if (ds[row].type!=:numeric or ds[col].type!=:numeric) nil elsif row==col ds[row].variance else if cache[[col,row]].nil? cov=covariance(ds[row],ds[col]) cache[[row,col]]=cov cov else cache[[col,row]] end end end end Matrix.rows mat_rows end |
.covariance_slow(v1, v2) ⇒ Object
:nodoc:
33 34 35 36 |
# File 'lib/statsample/bivariate.rb', line 33 def covariance_slow(v1,v2) # :nodoc: v1a,v2a=Statsample.only_valid(v1,v2) sum_of_squares(v1a,v2a) / (v1a.size-1) end |
.gamma(matrix) ⇒ Object
Calculates Goodman and Kruskal’s gamma.
Gamma is the surplus of concordant pairs over discordant pairs, as a percentage of all pairs ignoring ties.
Source: faculty.chass.ncsu.edu/garson/PA765/assocordinal.htm
323 324 325 326 |
# File 'lib/statsample/bivariate.rb', line 323 def gamma(matrix) v=pairs(matrix) (v['P']-v['Q']).to_f / (v['P']+v['Q']).to_f end |
.maximum_likehood_dichotomic(pred, real) ⇒ Object
Estimate the ML between two dichotomic vectors
24 25 26 27 28 29 30 31 |
# File 'lib/statsample/bivariate.rb', line 24 def maximum_likehood_dichotomic(pred,real) preda,reala=Statsample.only_valid_clone(pred,real) sum=0 preda.each_index{|i| sum+=(reala[i]*Math::log(preda[i])) + ((1-reala[i])*Math::log(1-preda[i])) } sum end |
.min_n_valid(ds) ⇒ Object
Report the minimum number of cases valid of a covariate matrix based on a dataset
392 393 394 395 396 397 398 399 400 401 |
# File 'lib/statsample/bivariate.rb', line 392 def min_n_valid(ds) min = ds.nrows m = n_valid_matrix(ds) for x in 0...m.row_size for y in 0...m.column_size min=m[x,y] if m[x,y] < min end end min end |
.n_valid_matrix(ds) ⇒ Object
Retrieves the n valid pairwise.
246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 |
# File 'lib/statsample/bivariate.rb', line 246 def n_valid_matrix(ds) vectors = ds.vectors.to_a m = vectors.collect do |row| vectors.collect do |col| if row==col ds[row].reject_values(*Daru::MISSING_VALUES).size else rowa,rowb = Statsample.only_valid_clone(ds[row],ds[col]) rowa.size end end end Matrix.rows m end |
.ordered_pairs(vector) ⇒ Object
370 371 372 373 374 375 376 377 378 379 |
# File 'lib/statsample/bivariate.rb', line 370 def ordered_pairs(vector) d = vector.to_a a = [] (0...(d.size-1)).each do |i| ((i+1)...(d.size)).each do |j| a.push([d[i],d[j]]) end end a end |
.pairs(matrix) ⇒ Object
Calculate indexes for a matrix the rows and cols has to be ordered
328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 |
# File 'lib/statsample/bivariate.rb', line 328 def pairs(matrix) # calculate concordant #p matrix rs=matrix.row_size cs=matrix.column_size conc=disc=ties_x=ties_y=0 (0...(rs-1)).each do |x| (0...(cs-1)).each do |y| ((x+1)...rs).each do |x2| ((y+1)...cs).each do |y2| # #p sprintf("%d:%d,%d:%d",x,y,x2,y2) conc+=matrix[x,y]*matrix[x2,y2] end end end end (0...(rs-1)).each {|x| (1...(cs)).each{|y| ((x+1)...rs).each{|x2| (0...y).each{|y2| # #p sprintf("%d:%d,%d:%d",x,y,x2,y2) disc+=matrix[x,y]*matrix[x2,y2] } } } } (0...(rs-1)).each {|x| (0...(cs)).each{|y| ((x+1)...(rs)).each{|x2| ties_x+=matrix[x,y]*matrix[x2,y] } } } (0...rs).each {|x| (0...(cs-1)).each{|y| ((y+1)...(cs)).each{|y2| ties_y+=matrix[x,y]*matrix[x,y2] } } } {'P'=>conc,'Q'=>disc,'Y'=>ties_y,'X'=>ties_x} end |
.partial_correlation(v1, v2, control) ⇒ Object
Correlation between v1 and v2, controling the effect of control on both.
138 139 140 141 142 143 144 |
# File 'lib/statsample/bivariate.rb', line 138 def partial_correlation(v1,v2,control) v1a,v2a,cona=Statsample.only_valid_clone(v1,v2,control) rv1v2=pearson(v1a,v2a) rv1con=pearson(v1a,cona) rv2con=pearson(v2a,cona) (rv1v2-(rv1con*rv2con)).quo(Math::sqrt(1-rv1con**2) * Math::sqrt(1-rv2con**2)) end |
.pearson(v1, v2) ⇒ Object Also known as: correlation
Calculate Pearson correlation coefficient ® between 2 vectors
46 47 48 49 50 51 52 53 54 |
# File 'lib/statsample/bivariate.rb', line 46 def pearson(v1,v2) v1a,v2a=Statsample.only_valid_clone(v1,v2) return nil if v1a.size ==0 if Statsample.has_gsl? GSL::Stats::correlation(v1a.to_gsl, v2a.to_gsl) else pearson_slow(v1a,v2a) end end |
.pearson_slow(v1, v2) ⇒ Object
:nodoc:
55 56 57 58 59 60 61 |
# File 'lib/statsample/bivariate.rb', line 55 def pearson_slow(v1,v2) # :nodoc: v1a,v2a=Statsample.only_valid_clone(v1,v2) # Calculate sum of squares ss=sum_of_squares(v1a,v2a) ss.quo(Math::sqrt(v1a.sum_of_squares) * Math::sqrt(v2a.sum_of_squares)) end |
.point_biserial(dichotomous, continous) ⇒ Object
Calculate Point biserial correlation. Equal to Pearson correlation, with one dichotomous value replaced by “0” and the other by “1”
283 284 285 286 287 288 289 290 291 |
# File 'lib/statsample/bivariate.rb', line 283 def point_biserial(dichotomous,continous) ds = Daru::DataFrame.new({:d=>dichotomous,:c=>continous}).reject_values(*Daru::MISSING_VALUES) raise(TypeError, "First vector should be dichotomous") if ds[:d].factors.size != 2 raise(TypeError, "Second vector should be continous") if ds[:c].type != :numeric f0=ds[:d].factors.sort.to_a[0] m0=ds.filter_vector(:c) {|c| c[:d] == f0} m1=ds.filter_vector(:c) {|c| c[:d] != f0} ((m1.mean-m0.mean).to_f / ds[:c].sdp) * Math::sqrt(m0.size*m1.size.to_f / ds.nrows**2) end |
.prediction_optimized(vars, cases) ⇒ Object
Predicted time for optimized correlation matrix, in miliseconds See benchmarks/correlation_matrix.rb to see mode of calculation
115 116 117 |
# File 'lib/statsample/bivariate.rb', line 115 def prediction_optimized(vars,cases) ((4+0.018128*cases+0.246871*vars+0.001169*vars*cases)**2) / 100 end |
.prediction_pairwise(vars, cases) ⇒ Object
Predicted time for pairwise correlation matrix, in miliseconds See benchmarks/correlation_matrix.rb to see mode of calculation
109 110 111 |
# File 'lib/statsample/bivariate.rb', line 109 def prediction_pairwise(vars,cases) ((-0.518111-0.000746*cases+1.235608*vars+0.000740*cases*vars)**2) / 100 end |
.prop_pearson(t, size, tails = :both) ⇒ Object
Retrieves the probability value (a la SPSS) for a given t, size and number of tails. Uses a second parameter
-
:both or 2 : for r!=0 (default)
-
:right, :positive or 1 : for r > 0
-
:left, :negative : for r < 0
87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 |
# File 'lib/statsample/bivariate.rb', line 87 def prop_pearson(t, size, tails=:both) tails=:both if tails==2 tails=:right if tails==1 or tails==:positive tails=:left if tails==:negative n_tails=case tails when :both then 2 else 1 end t=-t if t>0 and (tails==:both) cdf=Distribution::T.cdf(t, size-2) if(tails==:right) 1.0-(cdf*n_tails) else cdf*n_tails end end |
.residuals(from, del) ⇒ Object
Returns residual score after delete variance from another variable
121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 |
# File 'lib/statsample/bivariate.rb', line 121 def residuals(from,del) r=Statsample::Bivariate.pearson(from,del) froms, dels = from.vector_standarized, del.vector_standarized nv=[] froms.reset_index! dels.reset_index! froms.each_index do |i| if froms[i].nil? or dels[i].nil? nv.push(nil) else nv.push(froms[i]-r*dels[i]) end end Daru::Vector.new(nv) end |
.spearman(v1, v2) ⇒ Object
Spearman ranked correlation coefficient (rho) between 2 vectors
276 277 278 279 280 |
# File 'lib/statsample/bivariate.rb', line 276 def spearman(v1,v2) v1a,v2a = Statsample.only_valid_clone(v1,v2) v1r,v2r = v1a.ranked, v2a.ranked pearson(v1r,v2r) end |
.sum_of_squares(v1, v2) ⇒ Object
37 38 39 40 41 42 43 44 |
# File 'lib/statsample/bivariate.rb', line 37 def sum_of_squares(v1,v2) v1a,v2a=Statsample.only_valid_clone(v1,v2) v1a.reset_index! v2a.reset_index! m1=v1a.mean m2=v2a.mean (v1a.size).times.inject(0) {|ac,i| ac+(v1a[i]-m1)*(v2a[i]-m2)} end |
.t_pearson(v1, v2) ⇒ Object
Retrieves the value for t test for a pearson correlation between two vectors to test the null hipothesis of r=0
65 66 67 68 69 70 71 72 73 |
# File 'lib/statsample/bivariate.rb', line 65 def t_pearson(v1,v2) v1a,v2a=Statsample.only_valid_clone(v1,v2) r=pearson(v1a,v2a) if(r==1.0) 0 else t_r(r,v1a.size) end end |
.t_r(r, size) ⇒ Object
Retrieves the value for t test for a pearson correlation giving r and vector size Source : faculty.chass.ncsu.edu/garson/PA765/correl.htm
77 78 79 |
# File 'lib/statsample/bivariate.rb', line 77 def t_r(r,size) r * Math::sqrt(((size)-2).to_f / (1 - r**2)) end |
.tau_a(v1, v2) ⇒ Object
Kendall Rank Correlation Coefficient (Tau a) Based on Hervé Adbi article
294 295 296 297 298 299 300 301 302 |
# File 'lib/statsample/bivariate.rb', line 294 def tau_a(v1,v2) v1a,v2a=Statsample.only_valid_clone(v1,v2) n=v1.size v1r,v2r=v1a.ranked,v2a.ranked o1=ordered_pairs(v1r) o2=ordered_pairs(v2r) delta= o1.size*2-(o2 & o1).size*2 1-(delta * 2 / (n*(n-1)).to_f) end |
.tau_b(matrix) ⇒ Object
Calculates Goodman and Kruskal’s Tau b correlation. Tb is an asymmetric P-R-E measure of association for nominal scales (Mielke, X)
Tau-b defines perfect association as strict monotonicity. Although it requires strict monotonicity to reach 1.0, it does not penalize ties as much as some other measures.
Reference
Mielke, P. GOODMAN–KRUSKAL TAU AND GAMMA. Source: faculty.chass.ncsu.edu/garson/PA765/assocordinal.htm
313 314 315 316 |
# File 'lib/statsample/bivariate.rb', line 313 def tau_b(matrix) v=pairs(matrix) ((v['P']-v['Q']).to_f / Math::sqrt((v['P']+v['Q']+v['Y'])*(v['P']+v['Q']+v['X'])).to_f) end |