Class: Statsample::DominanceAnalysis::Bootstrap
- Includes:
- Summarizable, Writable
- Defined in:
- lib/statsample/dominanceanalysis/bootstrap.rb
Overview
Goal
Generates Bootstrap sample to identity the replicability of a Dominance Analysis. See Azen & Bodescu (2003) for more information.
Usage
require ‘statsample’ a = Daru::Vector.new(100.times.collect rand) b = Daru::Vector.new(100.times.collect rand) c = Daru::Vector.new(100.times.collect rand) d = Daru::Vector.new(100.times.collect rand) ds = Daru::DataFrame.new(=> a,:b => b,:c => c,:d => d) ds = ds.collect_rows { |row| row*5+row*2+row*2+row*2+10*rand() } dab=Statsample::DominanceAnalysis::Bootstrap.new(ds, :y, :debug=>true) dab.bootstrap(100,nil) puts dab.summary <strong>Output</strong>
Sample size: 100
t: 1.98421693632958
Linear Regression Engine: Statsample::Regression::Multiple::MatrixEngine
Table: Bootstrap report
--------------------------------------------------------------------------------------------
| pairs | sD | Dij | SE(Dij) | Pij | Pji | Pno | Reproducibility |
--------------------------------------------------------------------------------------------
| Complete dominance |
--------------------------------------------------------------------------------------------
| a - b | 1.0 | 0.6150 | 0.454 | 0.550 | 0.320 | 0.130 | 0.550 |
| a - c | 1.0 | 0.9550 | 0.175 | 0.930 | 0.020 | 0.050 | 0.930 |
| a - d | 1.0 | 0.9750 | 0.131 | 0.960 | 0.010 | 0.030 | 0.960 |
| b - c | 1.0 | 0.8800 | 0.276 | 0.820 | 0.060 | 0.120 | 0.820 |
| b - d | 1.0 | 0.9250 | 0.193 | 0.860 | 0.010 | 0.130 | 0.860 |
| c - d | 0.5 | 0.5950 | 0.346 | 0.350 | 0.160 | 0.490 | 0.490 |
--------------------------------------------------------------------------------------------
| Conditional dominance |
--------------------------------------------------------------------------------------------
| a - b | 1.0 | 0.6300 | 0.458 | 0.580 | 0.320 | 0.100 | 0.580 |
| a - c | 1.0 | 0.9700 | 0.156 | 0.960 | 0.020 | 0.020 | 0.960 |
| a - d | 1.0 | 0.9800 | 0.121 | 0.970 | 0.010 | 0.020 | 0.970 |
| b - c | 1.0 | 0.8850 | 0.283 | 0.840 | 0.070 | 0.090 | 0.840 |
| b - d | 1.0 | 0.9500 | 0.181 | 0.920 | 0.020 | 0.060 | 0.920 |
| c - d | 0.5 | 0.5800 | 0.360 | 0.350 | 0.190 | 0.460 | 0.460 |
--------------------------------------------------------------------------------------------
| General Dominance |
--------------------------------------------------------------------------------------------
| a - b | 1.0 | 0.6500 | 0.479 | 0.650 | 0.350 | 0.000 | 0.650 |
| a - c | 1.0 | 0.9800 | 0.141 | 0.980 | 0.020 | 0.000 | 0.980 |
| a - d | 1.0 | 0.9900 | 0.100 | 0.990 | 0.010 | 0.000 | 0.990 |
| b - c | 1.0 | 0.9000 | 0.302 | 0.900 | 0.100 | 0.000 | 0.900 |
| b - d | 1.0 | 0.9700 | 0.171 | 0.970 | 0.030 | 0.000 | 0.970 |
| c - d | 1.0 | 0.5600 | 0.499 | 0.560 | 0.440 | 0.000 | 0.560 |
--------------------------------------------------------------------------------------------
Table: General averages
---------------------------------------
| var | mean | se | p.5 | p.95 |
---------------------------------------
| a | 0.133 | 0.049 | 0.062 | 0.218 |
| b | 0.106 | 0.048 | 0.029 | 0.199 |
| c | 0.035 | 0.032 | 0.002 | 0.106 |
| d | 0.023 | 0.019 | 0.002 | 0.062 |
---------------------------------------
References:
-
Azen, R. & Budescu, D.V. (2003). The dominance analysis approach for comparing predictors in multiple regression. Psychological Methods, 8(2), 129-148.
Constant Summary collapse
- ALPHA =
Default level of confidence for t calculation
0.95
Instance Attribute Summary collapse
-
#alpha ⇒ Object
Alpha level of confidence.
-
#debug ⇒ Object
Debug?.
-
#ds ⇒ Object
Dataset.
-
#fields ⇒ Object
readonly
Name of fields.
-
#name ⇒ Object
Name of analysis.
-
#regression_class ⇒ Object
(also: #lr_class)
Regression class used for analysis.
-
#samples_cd ⇒ Object
readonly
Conditional Dominance results.
-
#samples_ga ⇒ Object
readonly
General average results.
-
#samples_gd ⇒ Object
readonly
General Dominance results.
-
#samples_td ⇒ Object
readonly
Total Dominance results.
Instance Method Summary collapse
-
#bootstrap(number_samples, n = nil) ⇒ Object
Creates n re-samples from original dataset and store result of each sample on @samples_td, @samples_cd, @samples_gd, @samples_ga.
- #create_samples_pairs ⇒ Object
- #da ⇒ Object
- #f(v, n = 3) ⇒ Object
-
#initialize(ds, y_var, opts = Hash.new) ⇒ Bootstrap
constructor
Create a new Dominance Analysis Bootstrap Object.
-
#report_building(builder) ⇒ Object
:nodoc:.
- #summary_pairs(pair, std, ttd) ⇒ Object
- #t ⇒ Object
Methods included from Summarizable
Methods included from Writable
Constructor Details
#initialize(ds, y_var, opts = Hash.new) ⇒ Bootstrap
Create a new Dominance Analysis Bootstrap Object
-
ds: A Daru::DataFrame object
-
y_var: Name of dependent variable
-
opts: Any other attribute of the class
97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 |
# File 'lib/statsample/dominanceanalysis/bootstrap.rb', line 97 def initialize(ds,y_var, opts=Hash.new) @ds = ds @y_var = y_var.respond_to?(:to_sym) ? y_var.to_sym : y_var @n = ds.nrows @n_samples=0 @alpha=ALPHA @debug=false if y_var.is_a? Array @fields=ds.vectors.to_a - y_var @regression_class=Regression::Multiple::MultipleDependent else @fields=ds.vectors.to_a - [y_var] @regression_class=Regression::Multiple::MatrixEngine end @samples_ga=@fields.inject({}) { |a,v| a[v]=[]; a } @name=_("Bootstrap dominance Analysis: %s over %s") % [ ds.vectors.to_a.join(",") , @y_var] opts.each{|k,v| self.send("#{k}=",v) if self.respond_to? k } create_samples_pairs end |
Instance Attribute Details
#alpha ⇒ Object
Alpha level of confidence. Default: ALPHA
87 88 89 |
# File 'lib/statsample/dominanceanalysis/bootstrap.rb', line 87 def alpha @alpha end |
#debug ⇒ Object
Debug?
89 90 91 |
# File 'lib/statsample/dominanceanalysis/bootstrap.rb', line 89 def debug @debug end |
#ds ⇒ Object
Dataset
83 84 85 |
# File 'lib/statsample/dominanceanalysis/bootstrap.rb', line 83 def ds @ds end |
#fields ⇒ Object (readonly)
Name of fields
79 80 81 |
# File 'lib/statsample/dominanceanalysis/bootstrap.rb', line 79 def fields @fields end |
#name ⇒ Object
Name of analysis
85 86 87 |
# File 'lib/statsample/dominanceanalysis/bootstrap.rb', line 85 def name @name end |
#regression_class ⇒ Object Also known as: lr_class
Regression class used for analysis
81 82 83 |
# File 'lib/statsample/dominanceanalysis/bootstrap.rb', line 81 def regression_class @regression_class end |
#samples_cd ⇒ Object (readonly)
Conditional Dominance results
73 74 75 |
# File 'lib/statsample/dominanceanalysis/bootstrap.rb', line 73 def samples_cd @samples_cd end |
#samples_ga ⇒ Object (readonly)
General average results
77 78 79 |
# File 'lib/statsample/dominanceanalysis/bootstrap.rb', line 77 def samples_ga @samples_ga end |
#samples_gd ⇒ Object (readonly)
General Dominance results
75 76 77 |
# File 'lib/statsample/dominanceanalysis/bootstrap.rb', line 75 def samples_gd @samples_gd end |
#samples_td ⇒ Object (readonly)
Total Dominance results
71 72 73 |
# File 'lib/statsample/dominanceanalysis/bootstrap.rb', line 71 def samples_td @samples_td end |
Instance Method Details
#bootstrap(number_samples, n = nil) ⇒ Object
Creates n re-samples from original dataset and store result of each sample on @samples_td, @samples_cd, @samples_gd, @samples_ga
-
number_samples: Number of new samples to add
-
n: size of each new sample. If nil, equal to original sample size
134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 |
# File 'lib/statsample/dominanceanalysis/bootstrap.rb', line 134 def bootstrap(number_samples,n=nil) number_samples.times{ |t| @n_samples+=1 puts _("Bootstrap %d of %d") % [t+1, number_samples] if @debug ds_boot=@ds.bootstrap(n) da_1=DominanceAnalysis.new(ds_boot, @y_var, :regression_class => @regression_class) da_1.total_dominance.each{|k,v| @samples_td[k].push(v) } da_1.conditional_dominance.each{|k,v| @samples_cd[k].push(v) } da_1.general_dominance.each{|k,v| @samples_gd[k].push(v) } da_1.general_averages.each{|k,v| @samples_ga[k].push(v) } } end |
#create_samples_pairs ⇒ Object
155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 |
# File 'lib/statsample/dominanceanalysis/bootstrap.rb', line 155 def create_samples_pairs @samples_td={} @samples_cd={} @samples_gd={} @pairs=[] c=(0...@fields.size).to_a.combination(2) c.each do |data| p data convert=data.collect {|i| @fields[i] } @pairs.push(convert) [@samples_td, @samples_cd, @samples_gd].each{|s| s[convert]=[] } end end |
#da ⇒ Object
123 124 125 126 127 128 |
# File 'lib/statsample/dominanceanalysis/bootstrap.rb', line 123 def da if @da.nil? @da=DominanceAnalysis.new(@ds,@y_var, :regression_class => @regression_class) end @da end |
#f(v, n = 3) ⇒ Object
226 227 228 229 |
# File 'lib/statsample/dominanceanalysis/bootstrap.rb', line 226 def f(v,n=3) prec="%0.#{n}f" sprintf(prec,v) end |
#report_building(builder) ⇒ Object
:nodoc:
173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 |
# File 'lib/statsample/dominanceanalysis/bootstrap.rb', line 173 def report_building(builder) # :nodoc: raise "You should bootstrap first" if @n_samples==0 builder.section(:name=>@name) do |generator| generator.text _("Sample size: %d\n") % @n_samples generator.text "t: #{t}\n" generator.text _("Linear Regression Engine: %s") % @regression_class.name table=ReportBuilder::Table.new(:name=>"Bootstrap report", :header => [_("pairs"), "sD","Dij", _("SE(Dij)"), "Pij", "Pji", "Pno", _("Reproducibility")]) table.row([_("Complete dominance"),"","","","","","",""]) table.hr @pairs.each{|pair| std=Daru::Vector.new(@samples_td[pair]) ttd=da.total_dominance_pairwise(pair[0],pair[1]) table.row(summary_pairs(pair,std,ttd)) } table.hr table.row([_("Conditional dominance"),"","","","","","",""]) table.hr @pairs.each{|pair| std=Daru::Vector.new(@samples_cd[pair]) ttd=da.conditional_dominance_pairwise(pair[0],pair[1]) table.row(summary_pairs(pair,std,ttd)) } table.hr table.row([_("General Dominance"),"","","","","","",""]) table.hr @pairs.each{|pair| std=Daru::Vector.new(@samples_gd[pair]) ttd=da.general_dominance_pairwise(pair[0],pair[1]) table.row(summary_pairs(pair,std,ttd)) } generator.parse_element(table) table=ReportBuilder::Table.new(:name=>_("General averages"), :header=>[_("var"), _("mean"), _("se"), _("p.5"), _("p.95")]) @fields.each{|f| v=Daru::Vector.new(@samples_ga[f]) row=[@ds[f].name, sprintf("%0.3f",v.mean), sprintf("%0.3f",v.sd), sprintf("%0.3f",v.percentil(5)),sprintf("%0.3f",v.percentil(95))] table.row(row) } generator.parse_element(table) end end |
#summary_pairs(pair, std, ttd) ⇒ Object
218 219 220 221 222 223 224 225 |
# File 'lib/statsample/dominanceanalysis/bootstrap.rb', line 218 def summary_pairs(pair,std,ttd) freqs=std.proportions [0, 0.5, 1].each{|n| freqs[n]=0 if freqs[n].nil? } name="%s - %s" % [@ds[pair[0]].name, @ds[pair[1]].name] [name,f(ttd,1),f(std.mean,4),f(std.sd),f(freqs[1]), f(freqs[0]), f(freqs[0.5]), f(freqs[ttd])] end |
#t ⇒ Object
170 171 172 |
# File 'lib/statsample/dominanceanalysis/bootstrap.rb', line 170 def t Distribution::T.p_value(1-((1-@alpha) / 2), @n_samples - 1) end |