Class: Statsample::FitModel
- Defined in:
- lib/statsample/formula/fit_model.rb
Overview
Class for performing regression
Instance Method Summary collapse
- #canonicalize_df(orig_df) ⇒ Object
- #df_for_prediction(df) ⇒ Object
- #df_for_regression ⇒ Object
- #fit_model ⇒ Object
-
#initialize(formula, df, opts = {}) ⇒ FitModel
constructor
A new instance of FitModel.
- #model ⇒ Object
- #predict(new_data) ⇒ Object
Constructor Details
#initialize(formula, df, opts = {}) ⇒ FitModel
Returns a new instance of FitModel.
6 7 8 9 10 |
# File 'lib/statsample/formula/fit_model.rb', line 6 def initialize(formula, df, opts = {}) @formula = FormulaWrapper.new formula, df @df = df @opts = opts end |
Instance Method Details
#canonicalize_df(orig_df) ⇒ Object
30 31 32 33 34 35 |
# File 'lib/statsample/formula/fit_model.rb', line 30 def canonicalize_df(orig_df) tokens = @formula.canonical_tokens tokens.shift if tokens.first.value == '1' df = tokens.map { |t| t.to_df orig_df }.reduce(&:merge) df end |
#df_for_prediction(df) ⇒ Object
20 21 22 |
# File 'lib/statsample/formula/fit_model.rb', line 20 def df_for_prediction df canonicalize_df(df) end |
#df_for_regression ⇒ Object
24 25 26 27 28 |
# File 'lib/statsample/formula/fit_model.rb', line 24 def df_for_regression df = canonicalize_df(@df) df[@formula.y.value] = @df[@formula.y.value] df end |
#fit_model ⇒ Object
37 38 39 40 41 42 43 44 |
# File 'lib/statsample/formula/fit_model.rb', line 37 def fit_model # TODO: Add support for inclusion/exclusion of intercept @model = Statsample::Regression.multiple( df_for_regression, @formula.y.value, @opts ) end |
#model ⇒ Object
12 13 14 |
# File 'lib/statsample/formula/fit_model.rb', line 12 def model @model || fit_model end |
#predict(new_data) ⇒ Object
16 17 18 |
# File 'lib/statsample/formula/fit_model.rb', line 16 def predict(new_data) model.predict(df_for_prediction(new_data)) end |