Class: SvmToolkit::Problem
- Inherits:
-
Object
- Object
- SvmToolkit::Problem
- Defined in:
- lib/svm_toolkit/problem.rb
Overview
Holds a set of labelled data.
Constant Summary collapse
- SvmLight =
To select SvmLight input file format
0- Csv =
To select Csv input file format
1- Arff =
To select ARFF input file format
2
Class Method Summary collapse
-
.from_array(instances, labels) ⇒ Object
Support constructing a problem from arrays of numbers (floating-point values).
-
.from_file(filename, format = SvmLight) ⇒ Object
Read in a problem definition from a given filename, using format SvmLight (default), Csv or Arff.
-
.from_file_arff(filename) ⇒ Object
Read in a problem definition in arff format, from given filename.
-
.from_file_csv(filename) ⇒ Object
Read in a problem definition in csv format from given filename.
-
.from_file_svmlight(filename) ⇒ Object
Read in a problem definition in svmlight format.
Instance Method Summary collapse
-
#label(n) ⇒ Object
Return label of nth instance.
-
#merge(problem) ⇒ Object
Create a new problem by combining the instances in this problem with those in the given problem.
-
#rescale(min_value = 0.0, max_value = 1.0) ⇒ Object
Rescale values within problem to be in range min_value to max_value.
-
#size ⇒ Object
Returns the number of instances.
-
#values(n) ⇒ Object
Return array of values for nth instance.
Class Method Details
.from_array(instances, labels) ⇒ Object
Support constructing a problem from arrays of numbers (floating-point values).
-
instances - an array of instances, each instance being an array of numbers.
-
labels - an array of numbers, forming the labels for each instance.
An ArgumentError exception is raised if all the following conditions are not met:
-
the number of instances should equal the number of labels,
-
there must be at least one instance, and
-
every instance must have the same number of features.
16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 |
# File 'lib/svm_toolkit/problem.rb', line 16 def self.from_array(instances, labels) unless instances.size == labels.size raise ArgumentError.new "Number of instances must equal number of labels" end unless instances.size > 0 raise ArgumentError.new "There must be at least one instance." end unless instances.collect {|i| i.size}.min == instances.collect {|i| i.size}.max raise ArgumentError.new "All instances must have the same size" end problem = Problem.new problem.l = labels.size # -- add in the training data problem.x = Node[instances.size, instances[0].size].new instances.each_with_index do |instance, i| instance.each_with_index do |v, j| problem.x[i][j] = Node.new(j, v) end end # -- add in the labels problem.y = Java::double[labels.size].new labels.each_with_index do |v, i| problem.y[i] = v end return problem end |
.from_file(filename, format = SvmLight) ⇒ Object
Read in a problem definition from a given filename, using format SvmLight (default), Csv or Arff.
57 58 59 60 61 62 63 64 65 66 |
# File 'lib/svm_toolkit/problem.rb', line 57 def self.from_file(filename, format = SvmLight) case format when SvmLight return Problem.from_file_svmlight filename when Csv return Problem.from_file_csv filename when Arff return Problem.from_file_arff filename end end |
.from_file_arff(filename) ⇒ Object
Read in a problem definition in arff format, from given filename. Assumes all values are numbers (non-numbers converted to 0.0), and that the class is the last field.
162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 |
# File 'lib/svm_toolkit/problem.rb', line 162 def self.from_file_arff filename instances = [] labels = [] max_index = 0 found_data = false IO.foreach(filename) do |line| unless found_data puts "Ignoring", line found_data = line.downcase.strip == "@data" next # repeat the loop end tokens = line.split(",") labels << tokens.last.to_f instance = [] tokens[1...-1].each_with_index do |value, index| instance << Node.new(index, value.to_f) end max_index = [tokens.size, max_index].max instances << instance end max_index += 1 # to allow for 0 position unless instances.size == labels.size raise ArgumentError.new "Number of labels read differs from number of instances" end # now create a Problem definition problem = Problem.new problem.l = instances.size # -- add in the training data problem.x = Node[instances.size, max_index].new # -- fill with blank nodes instances.size.times do |i| max_index.times do |j| problem.x[i][j] = Node.new(i, 0) end end # -- add known values instances.each_with_index do |instance, i| instance.each do |node| problem.x[i][node.index] = node end end # -- add in the labels problem.y = Java::double[labels.size].new labels.each_with_index do |v, i| problem.y[i] = v end return problem end |
.from_file_csv(filename) ⇒ Object
Read in a problem definition in csv format from given filename.
115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 |
# File 'lib/svm_toolkit/problem.rb', line 115 def self.from_file_csv filename instances = [] labels = [] max_index = 0 csv_data = CSV.parse(File.read(filename), headers: false) csv_data.each do |tokens| labels << tokens[0].to_f instance = [] tokens[1..-1].each_with_index do |value, index| instance << Node.new(index, value.to_f) end max_index = [tokens.size, max_index].max instances << instance end max_index += 1 # to allow for 0 position unless instances.size == labels.size raise ArgumentError.new "Number of labels read differs from number of instances" end # now create a Problem definition problem = Problem.new problem.l = instances.size # -- add in the training data problem.x = Node[instances.size, max_index].new # -- fill with blank nodes instances.size.times do |i| max_index.times do |j| problem.x[i][j] = Node.new(i, 0) end end # -- add known values instances.each_with_index do |instance, i| instance.each do |node| problem.x[i][node.index] = node end end # -- add in the labels problem.y = Java::double[labels.size].new labels.each_with_index do |v, i| problem.y[i] = v end return problem end |
.from_file_svmlight(filename) ⇒ Object
Read in a problem definition in svmlight format.
69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 |
# File 'lib/svm_toolkit/problem.rb', line 69 def self.from_file_svmlight filename instances = [] labels = [] max_index = 0 IO.foreach(filename) do |line| tokens = line.split(" ") labels << tokens[0].to_f instance = [] tokens[1..-1].each do |feature| index, value = feature.split(":") instance << Node.new(index.to_i, value.to_f) max_index = [index.to_i, max_index].max end instances << instance end max_index += 1 # to allow for 0 position unless instances.size == labels.size raise ArgumentError.new "Number of labels read differs from number of instances" end # now create a Problem definition problem = Problem.new problem.l = instances.size # -- add in the training data problem.x = Node[instances.size, max_index].new # -- fill with blank nodes instances.size.times do |i| max_index.times do |j| problem.x[i][j] = Node.new(i, 0) end end # -- add known values instances.each_with_index do |instance, i| instance.each do |node| problem.x[i][node.index] = node end end # -- add in the labels problem.y = Java::double[labels.size].new labels.each_with_index do |v, i| problem.y[i] = v end return problem end |
Instance Method Details
#label(n) ⇒ Object
Return label of nth instance
218 219 220 |
# File 'lib/svm_toolkit/problem.rb', line 218 def label(n) self.y[n] end |
#merge(problem) ⇒ Object
Create a new problem by combining the instances in this problem with those in the given problem.
239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 |
# File 'lib/svm_toolkit/problem.rb', line 239 def merge problem unless self.x[0].size == problem.x[0].size raise ArgumentError.new "Cannot merge two problems with different numbers of features" end num_features = self.x[0].size num_instances = size + problem.size new_problem = Problem.new new_problem.l = num_instances new_problem.x = Node[num_instances, num_features].new new_problem.y = Java::double[num_instances].new # fill out the features num_instances.times do |i| num_features.times do |j| if i < size new_problem.x[i][j] = self.x[i][j] else new_problem.x[i][j] = problem.x[i-size][j] end end end # fill out the labels num_instances.times do |i| if i < size new_problem.y[i] = self.y[i] else new_problem.y[i] = problem.y[i-size] end end return new_problem end |
#rescale(min_value = 0.0, max_value = 1.0) ⇒ Object
Rescale values within problem to be in range min_value to max_value
For SVM models, it is recommended all features be in range [0,1] or [-1,1]
230 231 232 233 234 235 |
# File 'lib/svm_toolkit/problem.rb', line 230 def rescale(min_value = 0.0, max_value = 1.0) return if self.l.zero? x[0].size.times do |i| rescale_column(i, min_value, max_value) end end |
#size ⇒ Object
Returns the number of instances
213 214 215 |
# File 'lib/svm_toolkit/problem.rb', line 213 def size self.l end |
#values(n) ⇒ Object
Return array of values for nth instance
223 224 225 |
# File 'lib/svm_toolkit/problem.rb', line 223 def values(n) self.x[n].collect { it.value } end |