Module: DataLayerProcessorNoiseRemoval
- Included in:
- DataLayerProcessor
- Defined in:
- lib/technical_graph/data_layer_processor_noise_removal.rb
Constant Summary collapse
- DEFAULT_NOISE_REMOVAL_LEVEL =
3
- DEFAULT_NOISE_REMOVAL_WINDOW_SIZE =
10
- NOISE_COEFF =
1000
- NOISE_POWER_COEFF =
8
Instance Attribute Summary collapse
-
#noise_removal ⇒ Object
Returns the value of attribute noise_removal.
-
#noise_removal_level ⇒ Object
Returns the value of attribute noise_removal_level.
-
#noise_removal_window_size ⇒ Object
Returns the value of attribute noise_removal_window_size.
-
#noise_threshold ⇒ Object
Returns the value of attribute noise_threshold.
Instance Method Summary collapse
- #calc_avg_derivative(i_from, i_to) ⇒ Object
-
#noise?(i) ⇒ Boolean
Check if data at index is noisy.
- #noise_removal_initialize(options) ⇒ Object
-
#noise_removal_process ⇒ Object
Smooth values.
- #noise_removal_window_from(i) ⇒ Object
- #noise_removal_window_to(i) ⇒ Object
Instance Attribute Details
#noise_removal ⇒ Object
Returns the value of attribute noise_removal.
20 21 22 |
# File 'lib/technical_graph/data_layer_processor_noise_removal.rb', line 20 def noise_removal @noise_removal end |
#noise_removal_level ⇒ Object
Returns the value of attribute noise_removal_level.
20 21 22 |
# File 'lib/technical_graph/data_layer_processor_noise_removal.rb', line 20 def noise_removal_level @noise_removal_level end |
#noise_removal_window_size ⇒ Object
Returns the value of attribute noise_removal_window_size.
20 21 22 |
# File 'lib/technical_graph/data_layer_processor_noise_removal.rb', line 20 def noise_removal_window_size @noise_removal_window_size end |
#noise_threshold ⇒ Object
Returns the value of attribute noise_threshold.
20 21 22 |
# File 'lib/technical_graph/data_layer_processor_noise_removal.rb', line 20 def noise_threshold @noise_threshold end |
Instance Method Details
#calc_avg_derivative(i_from, i_to) ⇒ Object
87 88 89 90 91 92 93 94 95 96 97 |
# File 'lib/technical_graph/data_layer_processor_noise_removal.rb', line 87 def calc_avg_derivative(i_from, i_to) part_array = data.clone_partial_w_fill(i_from, i_to) derivatives = Array.new (1...part_array.size).each do |i| x_len = (part_array[i].x - part_array[i - 1].x).abs y_len = (part_array[i].y - part_array[i - 1].y).abs derivatives << (x_len / y_len).abs if x_len.abs > 0 end avg_der = derivatives.float_mean return avg_der end |
#noise?(i) ⇒ Boolean
Check if data at index is noisy
57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 |
# File 'lib/technical_graph/data_layer_processor_noise_removal.rb', line 57 def noise?(i) i_from = noise_removal_window_from(i) i_to = noise_removal_window_to(i) # y_mean = part_array.collect { |p| p.y }.float_mean # # another algorithm # noise_strength = (data[i].y - y_mean).abs / y_mean # return noise_strength_enough?(noise_strength) # calc. avg 'derivative' avg_der = calc_avg_derivative(i_from, i_to) current_der = calc_avg_derivative(i-1, i+1) # safety return false if avg_der == 0 or current_der == 0 begin current_level = Math.log((current_der / avg_der) ** NOISE_POWER_COEFF).abs rescue Errno::EDOM # can not calculate logarithm return false rescue Errno::ERANGE # can not calculate logarithm return false end logger.debug "noise removal, avg der #{avg_der}, current #{current_der}, current lev #{current_level}, threshold #{noise_threshold}" return current_level > noise_threshold end |
#noise_removal_initialize(options) ⇒ Object
12 13 14 15 16 17 18 |
# File 'lib/technical_graph/data_layer_processor_noise_removal.rb', line 12 def noise_removal_initialize() @noise_removal = [:noise_removal] == true @noise_removal_level = [:noise_removal_level] || DEFAULT_NOISE_REMOVAL_LEVEL @noise_removal_window_size = [:noise_removal_window_size] || DEFAULT_NOISE_REMOVAL_WINDOW_SIZE @noise_threshold = Math.log(NOISE_COEFF / @noise_removal_level) end |
#noise_removal_process ⇒ Object
Smooth values
23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 |
# File 'lib/technical_graph/data_layer_processor_noise_removal.rb', line 23 def noise_removal_process return if noise_removal == false t = Time.now new_data = Array.new @noises_removed_count = 0 logger.debug "Noise removal started" (0...data.size).each do |i| if not noise?(i) new_data << data[i] else @noises_removed_count += 1 end end logger.debug "Noise removal completed, removed #{@noises_removed_count}" logger.debug " TIME COST #{Time.now - t}" @data = new_data return new_data end |
#noise_removal_window_from(i) ⇒ Object
48 49 50 |
# File 'lib/technical_graph/data_layer_processor_noise_removal.rb', line 48 def noise_removal_window_from(i) return i - (noise_removal_window_size.to_f / 2.0).ceil end |
#noise_removal_window_to(i) ⇒ Object
52 53 54 |
# File 'lib/technical_graph/data_layer_processor_noise_removal.rb', line 52 def noise_removal_window_to(i) return i + (noise_removal_window_size.to_f / 2.0).ceil end |