Module: TensorStream::OpenCLHelpers::ArrayOps
- Included in:
- Evaluator::OpenclEvaluator
- Defined in:
- lib/tensor_stream/opencl/array_ops.rb
Overview
Collection of math functions for interfacing with OpenCL kernels
Class Method Summary collapse
Class Method Details
.included(klass) ⇒ Object
5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 |
# File 'lib/tensor_stream/opencl/array_ops.rb', line 5 def ArrayOps.included(klass) klass.class_eval do #fast cached 0/1 constant fill register_op %i[zeros ones zeros_like ones_like] do |context, tensor, inputs| shape = if %i[zeros_like ones_like].include?(tensor.operation) inputs[0].shape elsif !inputs[0].nil? complete_eval(inputs[0], context).buffer.to_a else tensor.shape.shape end cache_key = "cons_#{tensor.name}_#{tensor.data_type}_#{shape}" @context[:_cache][:_cl_buffers][cache_key] ||= begin buffer = OpenCLBuffer.allocate_narray_for_type(tensor.data_type, shape.reduce(:*) || 1) if %i[zeros zeros_like].include?(tensor.operation) buffer.fill!(0) else buffer.fill!(1) end convert_to_opencl(buffer, shape, data_type: tensor.data_type, name: tensor.name) end end register_op :expand_dims, buffer: true do |_context, tensor, inputs| axis = inputs[1].buffer[0] shape = inputs[0].shape.dup axis = -axis if axis == shape.size new_shape = shape.insert(axis, 1).compact new_buf = inputs[0].buffer.reshape(*new_shape.reverse) convert_to_opencl(new_buf, new_shape, data_type: inputs[0].data_type, name: tensor.name) end register_op :fill, buffer: true do |_context, tensor, inputs| shape = inputs[0] value = inputs[1] fill_shape = shape.nil? ? tensor.shape.shape : shape.buffer.to_a narray_size = fill_shape.reduce(:*) || 1 cl_buffer = get_cached_buffer(tensor.name, fill_shape) buffer = if cl_buffer cl_buffer.buffer else OpenCLBuffer.allocate_narray_for_type(tensor.data_type, narray_size) end buffer.fill!(value.buffer[0]) convert_to_opencl(buffer, fill_shape, data_type: tensor.data_type, name: tensor.name) end register_op :split do |context, tensor, inputs| value, num_split, axis = inputs value_shape = value.shape axis = read_final_result(complete_eval(axis, context)) num_split = read_final_result(complete_eval(num_split, context)) multipliers = value_shape.dup.drop(1).reverse.inject([1]) do |a, s| a << s * a.last end.reverse outputs = if !num_split.is_a?(Array) # scalar split split_target = value_shape[axis] raise TensorStream::ValueError, "#{num_split} does not divide #{split_target} evenly" if split_target % num_split != 0 piece_size = split_target / num_split new_shape = value_shape.dup new_shape[axis] = piece_size if axis.zero? # axis zero fast copy path Array.new(num_split) do |index| _create_result_sub_buffer(value, index, tensor.data_type, new_shape, "#{tensor.name}/out_#{index}_#{num_split}") end else # create buffers for each piece work_buffer = _create_result_buffer(tensor.data_type, value_shape, "#{tensor.name}/out") piece_size = new_shape.reduce(:*) work_group = [num_split, piece_size] divisors = new_shape.dup.drop(1).reverse.inject([1]) do |a, s| a << s * a.last end.reverse cl_piece_size = OpenCL::Int1.new(piece_size) event_wait_list = build_event_wait_list(inputs) step = value_shape[axis] / num_split event = _cl_program('split', step: step, axis: axis, mul: multipliers, dest: divisors, data_type: tensor.data_type).split(_opencl_queue, work_group, cl_piece_size, value.cl_buffer, work_buffer.cl_buffer, event_wait_list: event_wait_list) work_buffer.op = event Array.new(num_split) do |index| _create_result_sub_buffer(work_buffer, index, tensor.data_type, new_shape, "#{tensor.name}/out_#{index}_#{num_split}") end end else raise TensorStream::ValueError, "#{num_split} does not divide #{value_shape[axis]} evenly" if num_split.reduce(:+) != value_shape[axis] # compute shapes of individual output buffers new_shapes = num_split.each_with_index.collect do |num, index| new_shape = value_shape.dup new_shape[axis] = num new_shape end out = [] if axis.zero? # axis zero fast copy path start = 0 new_shapes.each_with_index do |ns, index| element_count = ns.reduce(:*) || 1 region_size_in_bytes = element_count * value.buffer.element_size out << _create_variable_result_sub_buffer(value, index, start, region_size_in_bytes, tensor.data_type, ns, "#{tensor.name}/out_#{index}_#{ns.join('.')}") start += region_size_in_bytes end else # create buffers for each piece work_buffer = _create_result_buffer(tensor.data_type, value_shape, "#{tensor.name}/out") start = 0 steps = num_split.dup.reverse.drop(1).inject([0]) do |a, s| a << s + a.last end offsets = new_shapes.dup.reverse.drop(1).inject([0]) do |a, shape| size_bytes = shape.reduce(:*) || 1 a << a.last + size_bytes end events = new_shapes.each_with_index.collect do |shape, index| offset = offsets[index] step = steps[index] divisors = shape.dup.drop(1).reverse.inject([1]) do |a, s| a << s * a.last end.reverse piece_size = shape.reduce(:*) || 1 work_group = [piece_size] cl_offset = OpenCL::Int1.new(offset) _cl_program('split_n', axis: axis, div: divisors, mul: multipliers, step: step, data_type: tensor.data_type). split(_opencl_queue, work_group, cl_offset, value.cl_buffer, work_buffer.cl_buffer, event_wait_list: event_wait_list) end work_buffer.op = events new_shapes.each_with_index do |ns, index| element_count = ns.reduce(:*) || 1 region_size_in_bytes = element_count * work_buffer.buffer.element_size out << _create_variable_result_sub_buffer(work_buffer, index, start, region_size_in_bytes, tensor.data_type, ns, "#{tensor.name}/out_#{index}_#{new_shape.join('.')}") start += region_size_in_bytes end end out end TensorStream::Evaluator::OutputGroup.new(outputs, outputs.map(&:data_type)) end register_op :concat do |context, tensor, inputs| axis = inputs.shift shape = inputs[0].shape normal_shape = inputs[0].shape.dup axis = read_final_result(_run(axis, context)) axis = normal_shape.size - 1 if axis == -1 divisors = normal_shape.dup.drop(1).reverse.inject([1]) do |a, s| a << s * a.last end.reverse new_shape = inputs[0].shape.dup new_shape[axis] = 0 inputs.each do |input| new_shape[axis] += input.shape[axis] end multipliers = new_shape.dup.drop(1).reverse.inject([1]) do |a, s| a << s * a.last end.reverse output_buffer = _create_result_buffer(tensor.data_type, new_shape, tensor.name) ops = if axis.zero? # fast path inputs.each_with_index.map do |input, index| next if input.empty_value? start = index * input.buffer.size * input.buffer.element_size region = [input.buffer.size * input.buffer.element_size, 1, 1] event_wait_list = build_event_wait_list(input) _opencl_queue.enqueue_copy_buffer_rect(input.cl_buffer, output_buffer.cl_buffer, region, dst_origin: [start, 0, 0], event_wait_list: event_wait_list) end.compact else elem_size = shape.empty? ? 1 : shape.reduce(:*) cl_n = OpenCL::Int1.new(elem_size) steps = inputs.map(&:shape).reverse.drop(1).inject([0]) do |a, shape| a << shape[axis] + a.last end work_group = [elem_size] event_wait_list = build_event_wait_list(inputs) inputs.each_with_index.map do |input, index| cl_index = OpenCL::Int1.new(index) step = OpenCL::Int1.new(steps[index]) _cl_program('concat', data_type: tensor.data_type, divisors: divisors, multipliers: multipliers, axis: axis). concat(_opencl_queue, work_group, cl_n, cl_index, step, input.cl_buffer, output_buffer.cl_buffer, event_wait_list: event_wait_list) end end output_buffer.op = ops output_buffer end register_op :squeeze do |_context, tensor, inputs| arr = inputs[0] shape = inputs[0].shape.dup axis = !tensor.[:axis].is_a?(Array) ? [tensor.[:axis]] : tensor.[:axis] if !axis.empty? axis.each do |x| raise TensorStream::ValueError, "unable to squeeze dimension that does not have a size of 1" unless shape[x] == 1 shape[x] = nil end else shape = shape.map { |s| s == 1 ? nil : s } end OpenCLBuffer.new(self, name: tensor.name, data_type: tensor.data_type, shape: shape.compact, buffer: arr.buffer, cl_buffer: arr.cl_buffer, op: arr.op) end register_op :stack do |_context, tensor, inputs| axis = tensor.[:axis] || 0 shape = inputs[0].shape rank = shape.size + 1 elem_size = shape.empty? ? 1 : shape.reduce(:*) new_shape = [inputs.size] shape.inject(new_shape) { |ns, s| ns << s } divisors = new_shape.dup.drop(1).reverse.inject([1]) do |a, s| a << s * a.last end.reverse axis = rank + axis if axis < 0 rotated_shape = Array.new(axis + 1) { new_shape.shift } new_shape = rotated_shape.rotate! + new_shape output_buffer = _create_result_buffer(tensor.data_type, new_shape, tensor.name) multipliers = new_shape.dup.drop(1).reverse.inject([1]) do |a, s| a << s * a.last end.reverse cl_n = OpenCL::Int1.new(elem_size) work_group = [elem_size] ops = if axis.zero? # fast path if axis == 0 step = multipliers[0] inputs.each_with_index.map do |input, index| start = index * step * input.buffer.element_size region = [input.buffer.size * input.buffer.element_size, 1, 1] _opencl_queue.enqueue_copy_buffer_rect(input.cl_buffer, output_buffer.cl_buffer, region, dst_origin: [start, 0, 0], event_wait_list: input.op) end else event_wait_list = build_event_wait_list(inputs) inputs.each_with_index.map do |input, index| cl_index = OpenCL::Int1.new(index) _cl_program('pack', data_type: tensor.data_type, divisors: divisors, multipliers: multipliers, axis: axis).pack(_opencl_queue, work_group, cl_n, cl_index, input.cl_buffer, output_buffer.cl_buffer, event_wait_list: event_wait_list) end end output_buffer.op = ops output_buffer end register_op :unstack do |context, tensor, inputs| value = inputs[0] axis = tensor.[:axis] || 0 new_shape = value.shape.dup rank = new_shape.size - 1 elem_size = new_shape.empty? ? 1 : new_shape.reduce(:*) divisors = new_shape.dup.drop(1).reverse.inject([1]) do |a, s| a << s * a.last end.reverse axis = rank + axis if axis < 0 rotated_shape = Array.new(axis + 1) { new_shape.shift } new_shape = rotated_shape.rotate!(-1) + new_shape multipliers = new_shape.dup.drop(1).reverse.inject([1]) do |a, s| a << s * a.last end.reverse sub_shape = new_shape.dup sub_shape.shift outputs = if axis.zero? # shortcut for axis == 0 Array.new(new_shape[0]) do |index| _create_result_sub_buffer(value, index, tensor.data_type, sub_shape, "#{tensor.name}/out_#{index}") end else output_buffer = _create_result_buffer(tensor.data_type, new_shape, tensor.name) cl_n = OpenCL::Int1.new(elem_size) work_group = [elem_size] event_wait_list = build_event_wait_list(inputs) ops = inputs.each_with_index.map do |input, index| cl_index = OpenCL::Int1.new(index) _cl_program('unpack', data_type: tensor.data_type, divisors: divisors, multipliers: multipliers, axis: axis).unpack(_opencl_queue, work_group, cl_n, cl_index, input.cl_buffer, output_buffer.cl_buffer, event_wait_list: event_wait_list) end output_buffer.op = ops Array.new(new_shape[0]) do |index| _create_result_sub_buffer(output_buffer, index, tensor.data_type, sub_shape, "#{tensor.name}/out_#{index}") end end TensorStream::Evaluator::OutputGroup.new(outputs, outputs.map(&:data_type)) end register_op :index, noop: true do |context, tensor, inputs| a = _run(inputs[0], context) index = inputs[1].value || read_final_result(_run(inputs[1], context)) if a.is_a?(TensorStream::Evaluator::OutputGroup) a.outputs[index] elsif a.is_a?(Array) a[index] else new_shape = a.shape.dup new_shape.shift _create_result_sub_buffer(a, index, tensor.data_type, new_shape, "#{tensor.name}/out_#{index}") end end register_op :shape do |_context, tensor, inputs| wrap_opencl(inputs[0].shape, name: tensor.name, data_type: tensor.data_type) end register_op :shape_n do |_context, tensor, inputs| shapes = inputs.collect.with_index do |input, index| wrap_opencl(input.shape, name: "#{tensor.name}_#{index}", data_type: tensor.data_type) end TensorStream::Evaluator::OutputGroup.new(shapes, shapes.map { tensor.data_type }) end register_op :reshape do |context, tensor, inputs| arr, new_shape = inputs new_shape = complete_eval(new_shape, context).buffer.to_a shape = if new_shape.size.zero? && arr.buffer.size == 1 new_shape else TensorShape.fix_inferred_elements(new_shape, arr.buffer.size) end OpenCLBuffer.new(self, name: tensor.name, data_type: tensor.data_type, shape: shape, buffer: arr.buffer, cl_buffer: arr.cl_buffer, op: arr.op) end register_op :transpose, buffer: true do |_context, tensor, inputs| t_param = Array.new(inputs[0].shape.size) { |index| index }.reverse if inputs[0].shape.size == 2 && inputs[1].nil? transposed = inputs[0].buffer.reshape(*inputs[0].shape.reverse).transpose(*t_param) res = convert_to_opencl(transposed.flatten, transposed.shape.reverse, data_type: inputs[0].data_type, name: tensor.name) res else rank = inputs[0].shape.size perm = inputs[1].nil? ? (0...rank).to_a.reverse : inputs[1].buffer! new_shape = perm.map { |p| inputs[0].shape[p] }.to_a output_buffer = _create_result_buffer(tensor.data_type, new_shape, tensor.name, allocate_host: true) transpose_with_perm(inputs[0].buffer, output_buffer.buffer, inputs[0].shape, new_shape, perm) write_op = _opencl_queue.enqueue_write_buffer(output_buffer.cl_buffer, output_buffer.buffer) output_buffer.op = write_op output_buffer end end register_op :slice, noop: true do |context, tensor, inputs| input_a = complete_eval(inputs[0], context) input_b = read_final_result(complete_eval(inputs[1], context)) size = tensor.[:size] shape = input_a.shape slice_param = input_b.zip(size).collect.with_index do |p, index| p[1] = p[1] == -1 ? shape[index] : p[1] p[0]..p[0] + p[1] - 1 end.reverse new_buf = input_a.buffer.reshape(*input_a.shape.reverse) sliced = new_buf.slice[*slice_param] convert_to_opencl(sliced.flatten, sliced.shape.reverse, data_type: inputs[0].data_type, name: tensor.name) end register_op :rank do |_context, tensor, inputs| wrap_opencl(inputs[0].shape.size, data_type: tensor.data_type, name: tensor.name) end register_op :cast do |_context, tensor, inputs| a = inputs[0] if a.data_type != tensor.data_type buffer = _create_result_buffer(tensor.data_type, a.shape, tensor.name) work_group = if inputs[0].shape.size > 2 [inputs[0].shape.reduce(:*) / inputs[0].shape.last, inputs[0].shape.last] else m, n = inputs[0].shape [m || 1, n || 1] end cl_m = OpenCL::Int1.new(work_group[0]) cl_n = OpenCL::Int1.new(work_group[1]) event_wait_list = build_event_wait_list(inputs) buffer.op = _cl_program("cast", source_dt: a.data_type, target_dt: tensor.data_type).cast(_opencl_queue, work_group, cl_m, cl_n, a.cl_buffer, buffer.cl_buffer, event_wait_list: event_wait_list) buffer else a end end register_op :range do |context, tensor, inputs| start, limit, delta = complete_eval(inputs, context).map { |p| p.buffer.to_a.first } if limit.zero? limit = start start = 0 end raise " delta !=0 " if delta.zero? raise " Requires start <= limit when delta > 0" if (start > limit) && delta > 0 raise " Requires start >= limit when delta < 0" if (start < limit) && delta < 0 cache_key = "range_#{start}_#{limit}_#{delta}_#{tensor.data_type}" @context[:_cache][:_cl_buffers][cache_key] ||= begin delta = fp_type?(tensor.[:output_type]) ? delta.to_f : delta.to_i cur_step = fp_type?(tensor.[:output_type]) ? start.to_f : start.to_i r = [] Kernel.loop do break if start == limit break if (start < limit) && (cur_step >= limit) break if (start > limit) && (cur_step <= limit) r << cur_step cur_step += delta end r convert_to_opencl(r, [r.size], data_type: tensor.[:output_type], name: tensor.name) end end end end |