Module: TensorStream::OpenCLHelpers::MathOps
- Included in:
- Evaluator::OpenclEvaluator
- Defined in:
- lib/tensor_stream/opencl/math_ops.rb
Overview
Collection of math functions for interfacing with OpenCL kernels
Class Method Summary collapse
Class Method Details
.included(klass) ⇒ Object
5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 |
# File 'lib/tensor_stream/opencl/math_ops.rb', line 5 def MathOps.included(klass) klass.class_eval do %i[max min add real_div div sub floor_mod mod mul pow sigmoid_grad squared_difference].each do |op| register_op op do |_context, tensor, inputs| execute_2_operand_func(op.to_s, tensor, inputs[0], inputs[1]) end end register_op :add_n do |_context, tensor, inputs| if inputs.size == 1 inputs[0] else work_group = if inputs[0].shape.size > 2 [ inputs[0].shape.reduce(:*) / inputs[0].shape.last, inputs[0].shape.last] else m, n = inputs[0].shape [m || 1, n || 1] end cl_m = OpenCL::Int1.new(work_group[0]) cl_n = OpenCL::Int1.new(work_group[1]) cl_switch = OpenCL::Int1.new(0) dtype = tensor.data_type output_buffer = _create_result_buffer(tensor.data_type, inputs[0].shape, "out_#{tensor.name}") inputs_queue = inputs.dup a = inputs_queue.pop until inputs_queue.empty? b = inputs_queue.pop event_wait_list = build_event_wait_list([a, b]) method_call = :"add_#{a.data_type}_#{b.data_type}" event = _cl_program('add', a: a.data_type, b: b.data_type, dtype: dtype).send(method_call, _opencl_queue, work_group, cl_m, cl_n, cl_switch, a.cl_buffer, b.cl_buffer, output_buffer.cl_buffer, event_wait_list: event_wait_list) a = output_buffer a.op = event end output_buffer.op = a.op output_buffer end end register_op :floor_div do |context, tensor, inputs| if fp_type?(tensor.data_type) execute_2_operand_func('floor_div', tensor, inputs[0], inputs[1]) else execute_2_operand_func('div', tensor, inputs[0], inputs[1]) end end register_op :mat_mul do |_context, tensor, inputs| a, b = inputs a_matrix_shape = a.shape.dup b_matrix_shape = b.shape.dup k = a_matrix_shape.pop m = a_matrix_shape.pop n = b_matrix_shape.pop v = b_matrix_shape.pop if tensor.[:transpose_a] m, k = k, m end if tensor.[:transpose_b] n, v = v, n end result_shape = [a_matrix_shape.first, m, n].compact work_group = [a_matrix_shape.first || 1, m, n] raise "#{tensor.inputs[0].name} rank must be greater than 1" if a.shape.size < 2 raise "#{tensor.inputs[1].name} rank must be greater than 1" if b.shape.size < 2 raise "#{tensor.inputs[0].name} unsupported rank" if b.shape.size > 3 || a.shape.size > 3 raise "incompatible shape sizes for matrix multiplication (#{a.shape[1]} != #{b.shape[0]}) #{a.shape} vs #{b.shape}" if k != v dtype = tensor.data_type a, b = auto_type_cast(a, b, name: "#{tensor.name}/cast_#{a.name}_#{b.data_type}") output_buffer = _create_result_buffer(a.data_type, result_shape, tensor.name) cl_m = OpenCL::Int1.new(m) cl_n = OpenCL::Int1.new(n) cl_k = OpenCL::Int1.new(k) event_wait_list = build_event_wait_list([a, b]) output_buffer.op = _cl_program('gemm', ta: !!tensor.[:transpose_a], tb: !!tensor.[:transpose_b], n: m * n, n_a: m * k, n_b: n * v, dtype: dtype).send(:"gemm_#{dtype}", _opencl_queue, work_group, cl_m, cl_n, cl_k, a.cl_buffer, b.cl_buffer, output_buffer.cl_buffer, event_wait_list: event_wait_list) output_buffer end register_op :bias_add do |context, tensor, inputs| value, bias = inputs output_buffer = _create_result_buffer(value.data_type, value.shape, tensor.name) result_shape = value.shape.dup bias_length = result_shape.pop work_group = [result_shape.reduce(:*)] event_wait_list = build_event_wait_list([value, bias]) dtype = tensor.data_type output_buffer.op = _cl_program('bias_add', n: bias_length, dtype: dtype) .send(:"bias_add_#{dtype}", _opencl_queue, work_group, value.cl_buffer, bias.cl_buffer, output_buffer.cl_buffer, event_wait_list: event_wait_list) output_buffer end register_op :bias_add_grad do |context, tensor, inputs| received_grad = inputs[0] bias_size = received_grad.shape.last output_buffer = _create_result_buffer(received_grad.data_type, [bias_size], tensor.name) work_group = [bias_size] received_grad_shape = received_grad.shape.dup received_grad_shape.pop item_rows = received_grad_shape.reduce(:*) dtype = tensor.data_type output_buffer.op = _cl_program('bias_add_grad', n: bias_size, rows: item_rows, dtype: dtype) .send(:"bias_add_grad_#{dtype}", _opencl_queue, work_group, received_grad.cl_buffer, output_buffer.cl_buffer, event_wait_list: build_event_wait_list([received_grad])) output_buffer end %i[sign exp tan acos asin sin cos abs sqrt negate square reciprocal tanh tanh_grad sigmoid log1p round floor ceil log].each do |op| register_op op, noop: true do |context, tensor, inputs| execute_func(op.to_s, tensor, inputs[0], context) end end %i[sum mean].each do |op| register_op op do |context, tensor, inputs| reduction(context, tensor, inputs[0], inputs[1], op.to_sym) end end register_op :prod do |context, tensor, inputs| if inputs[0].shape == [0] convert_to_opencl([1.0], [], data_type: inputs[0].data_type, name: tensor.name) else reduction(context, tensor, inputs[0], inputs[1], :prod) end end %i[argmin argmax].each do |op| register_op op do |context, tensor, inputs| value, axis = inputs rank = value.shape.size axis = 0 if axis.nil? axis = axis.is_a?(OpenCLBuffer) ? read_final_result(axis) : axis raise TensorStream::InvalidArgumentError, "Expected dimension in the range [#{-rank},#{rank}) but got #{axis}" if axis < -rank || axis >= rank reduce_multi_axis(context, tensor, value, axis, 'arg', op.to_sym) end end def reduction(child_context, tensor, value, axis, func) if axis.nil? value = _run(value, child_context) size = value.shape.reduce(:*) || 1 if value.shape.empty? # for scalars, just return as is value else reduction_threads = 32 items_per_thread_threshold = 4 output_buffer = _create_result_buffer(value.data_type, [], tensor.name) event_wait_list = build_event_wait_list([value]) if (size > reduction_threads) && ((size / reduction_threads) > items_per_thread_threshold) items_per_thread = size / reduction_threads extra_items = size % reduction_threads intermediate_output_buffer = _create_result_buffer(value.data_type, [reduction_threads], tensor.name) temp_values = if extra_items.zero? _cl_program(func, dtype: value.data_type, index: 0, n: items_per_thread, w: items_per_thread). send(:"#{func}_#{value.data_type}", _opencl_queue, [reduction_threads], value.cl_buffer, intermediate_output_buffer.cl_buffer, event_wait_list: event_wait_list) else [_cl_program(func, dtype: value.data_type, index: 0, n: items_per_thread, w: items_per_thread). send(:"#{func}_#{value.data_type}", _opencl_queue, [reduction_threads - 1], value.cl_buffer, intermediate_output_buffer.cl_buffer, event_wait_list: event_wait_list), _cl_program(func, dtype: value.data_type, index: reduction_threads - 1, n: items_per_thread + extra_items, w: items_per_thread).send(:"#{func}_#{value.data_type}", _opencl_queue, [1], value.cl_buffer, intermediate_output_buffer.cl_buffer, event_wait_list: event_wait_list)] end output_buffer.op = _cl_program(func, dtype: value.data_type, n: reduction_threads, index: 0, w: 0).send(:"#{func}_#{value.data_type}", _opencl_queue, [1], value.cl_buffer, output_buffer.cl_buffer, event_wait_list: temp_values) output_buffer else output_buffer.op = _cl_program(func, dtype: value.data_type, n: size, index: 0, w: 0).send(:"#{func}_#{value.data_type}", _opencl_queue, [1], value.cl_buffer, output_buffer.cl_buffer, event_wait_list: event_wait_list) output_buffer end end else reduce_multi_axis(child_context, tensor, value, axis, 'reduce', func) end end def reduce_multi_axis(child_context, tensor, value, axis, prog, func) return value if value.shape.empty? rank = value.shape.size axis = axis.is_a?(OpenCLBuffer) ? read_final_result(axis) : axis axis = [axis] unless axis.is_a?(Array) return value if axis.empty? # remap negative values axis.map! { |axis| axis < 0 ? rank - axis.abs : axis } new_shape = value.shape.collect.with_index { |v, index| axis.include?(index) ? nil : v }.compact buffer_shape = tensor.[:keepdims] ? _reduced_shape(value.shape.dup, axis) : new_shape output_buffer = _create_result_buffer(tensor.[:output_type] || tensor.data_type, buffer_shape, tensor.name) work_group = new_shape.empty? ? [1] : new_shape dtype = value.data_type output_buffer.op = _cl_program("#{prog}_axis", f: func, axis: axis, shape: value.shape, o_shape: new_shape, dtype: dtype, out_dtype: tensor.[:output_type]) .send("#{prog}_axis_#{dtype}", _opencl_queue, work_group, value.cl_buffer, output_buffer.cl_buffer, event_wait_list: build_event_wait_list([value])) output_buffer end end end |