Class: TensorStream::MathGradients
- Inherits:
-
Object
- Object
- TensorStream::MathGradients
- Extended by:
- OpHelper
- Defined in:
- lib/tensor_stream/math_gradients.rb
Overview
Class that provides auto-differentiation Most gradients are ported over from tensorflow’s math_grad.py
Class Method Summary collapse
- ._broadcast_gradient_args(input_a, input_b) ⇒ Object
- ._broadcast_mul(vec, mat) ⇒ Object
- ._broadcast_transform(input_a, input_b) ⇒ Object
-
._compute_derivative(node, grad) ⇒ Object
TODO: refactor and implement registerGradient.
- ._concat_grad_helper(op, grad, start_value_index, end_value_index, dim_index) ⇒ Object
- ._Conv2DGrad(op, grad) ⇒ Object
- ._extract_input_shapes(inputs) ⇒ Object
- ._include?(arr, obj) ⇒ Boolean
- ._int32(node, x) ⇒ Object
- ._min_or_max_grad(inputs, grad, selector_op) ⇒ Object
- ._op_supports_broadcast?(node) ⇒ Boolean
- ._propagate(grad, tensor, stop_tensor, nodes_to_compute, stop_gradients = []) ⇒ Object
- ._reshape_to_input(node, grad) ⇒ Object
- ._safe_shape_div(arg_x, arg_y) ⇒ Object
- ._sum_grad(arg_x, arg_y, grad) ⇒ Object
- .derivative(tensor, wrt_dx, options = {}) ⇒ Object
- .ts ⇒ Object
Methods included from OpHelper
_op, cons, format_source, fp_type?, i_cons, i_op, i_var, int_type?, reduced_shape, shape_eval, shape_full_specified, shapes_fully_specified_and_equal
Class Method Details
._broadcast_gradient_args(input_a, input_b) ⇒ Object
192 193 194 195 |
# File 'lib/tensor_stream/math_gradients.rb', line 192 def self._broadcast_gradient_args(input_a, input_b) res = _op(:broadcast_gradient_args, input_a, input_b) [res[0], res[1]] end |
._broadcast_mul(vec, mat) ⇒ Object
238 239 240 241 |
# File 'lib/tensor_stream/math_gradients.rb', line 238 def self._broadcast_mul(vec, mat) vec = ts.(vec, -1) vec * mat end |
._broadcast_transform(input_a, input_b) ⇒ Object
197 198 199 |
# File 'lib/tensor_stream/math_gradients.rb', line 197 def self._broadcast_transform(input_a, input_b) _op(:broadcast_transform, input_a, input_b) end |
._compute_derivative(node, grad) ⇒ Object
TODO: refactor and implement registerGradient
52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 |
# File 'lib/tensor_stream/math_gradients.rb', line 52 def self._compute_derivative(node, grad) node.graph.name_scope("#{node.name}_grad") do x = node.inputs[0] if node.inputs[0] y = node.inputs[1] if node.inputs[1] z = node.inputs[2] if node.inputs[2] case node.operation when :add_n return [grad] * node.inputs.size when :asin ts.control_dependencies([grad]) do x2 = ts.square(x) one = ts.constant(1, dtype: grad.data_type) den = ts.sqrt(ts.subtract(one, x2)) inv = ts.reciprocal(den) grad * inv end when :acos ts.control_dependencies([grad]) do x2 = ts.square(x) one = ts.constant(1, dtype: grad.data_type) den = ts.sqrt(ts.subtract(one, x2)) inv = ts.reciprocal(den) -grad * inv end when :atan ts.control_dependencies([grad]) do x2 = ts.square(x) one = ts.constant(1, dtype: grad.data_type) inv = ts.reciprocal(ts.add(one, x2)) grad * inv end when :squared_difference sx = i_op(:shape, x) sy = i_op(:shape, y) rx, ry = _broadcast_gradient_args(sx, sy) x_grad = ts.mul(2.0, grad) * (x - y) [ts.reshape(ts.reduce_sum(x_grad, rx), sx), ts.reshape(-ts.reduce_sum(x_grad, ry), sy),] when :abs grad * ts.sign(x) when :exp grad * node when :identity, :print grad when :tile input_shape = ts.shape(x) split_shape = ts.reshape(ts.transpose(ts.stack([y, input_shape])), [-1]) axes = ts.range(0, ts.size(split_shape), 2) input_grad = ts.reduce_sum(ts.reshape(grad, split_shape), axes) [input_grad, nil] when :reciprocal -grad * (ts.constant(1, dtype: x.dtype) / x**2) when :sqrt ts.constant(1, dtype: x.dtype) / (ts.constant(2, dtype: x.dtype) * ts.sqrt(x)) * grad when :stop_gradient ts.zeros_like(grad) when :square y = ts.constant(2.0, dtype: x.dtype) ts.multiply(grad, ts.multiply(x, y)) when :where x_mask = i_op(:where, x, i_op(:ones_like, y), i_op(:zeros_like, z)) y_mask = i_op(:where, x, i_op(:zeros_like, y), i_op(:ones_like, z)) [nil, x_mask * grad, y_mask * grad] when :mean sum_grad = _sum_grad(x, y, grad)[0] input_shape = ts.shape(x) output_shape = ts.shape(node) factor = _safe_shape_div(ts.reduce_prod(input_shape), ts.reduce_prod(output_shape)) [ts.div(sum_grad, ts.cast(factor, sum_grad.data_type)), nil] when :log1p grad * ts.reciprocal(i_cons(1, dtype: grad.data_type) + x) when :sigmoid_grad gb = grad * y [gb - 2.0 * gb * x, i_op(:sigmoid_grad, x, grad)] when :softmax i_op(:softmax_grad, x, grad) when :softmax_cross_entropy_with_logits_v2 output = node logits = node.inputs[0] [_broadcast_mul(grad, output[1]), -ts.nn.log_softmax(logits)] when :sparse_softmax_cross_entropy_with_logits output = node [_broadcast_mul(grad, output[1]), nil] when :zeros_like # non differentiable nil when :transpose return [ts.transpose(grad, ts.invert_permutation(y)), nil] when :index # hack!! not sure how to fix this yet return grad if %i[softmax_cross_entropy_with_logits_v2 sparse_softmax_cross_entropy_with_logits].include?(node.inputs[0].operation) if node.inputs[0].shape.known? && node.inputs[1].const_value multiplier = node.inputs[0].shape.shape[0] filler = ts.zeros_like(grad) res = Array.new(multiplier) { |index| index == node.inputs[1].const_value ? grad : filler } [res] end when :squeeze _reshape_to_input(node, grad) when :concat _concat_grad_helper(node, grad, 1, node.inputs.size, 0) when :stack res = ts.unstack(grad, num: node.inputs.size, axis: node.[:axis]) Array.new(node.inputs.size) { |i| res[i] } when :unstack ts.stack(grad, axis: node.[:axis]) when :conv2d _Conv2DGrad(node, grad) when :flow_dynamic_stitch num_values = node.inputs.size / 2 indices_grad = [nil] * num_values inputs = (0...num_values).map { |i| _int32(node, node.inputs[i]) } values_grad = inputs.map { |inp| TensorStream.gather(grad, inp) } indices_grad + values_grad when :gather [_op(:gather_grad, grad, node.inputs[1], TensorStream.shape(node.inputs[0])), nil] else TensorStream::OpMaker.gradient_op(self, node, grad) end end end |
._concat_grad_helper(op, grad, start_value_index, end_value_index, dim_index) ⇒ Object
267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 |
# File 'lib/tensor_stream/math_gradients.rb', line 267 def self._concat_grad_helper(op, grad, start_value_index, end_value_index, dim_index) # Degenerate concatenation, just return grad. if op.inputs.size == 2 return end_value_index <= dim_index ? [grad] + [nil] : [nil] + [grad] end concat_dim = op.inputs[dim_index] input_values = op.inputs[start_value_index..end_value_index] non_neg_concat_dim = concat_dim % ts.rank(input_values[0]) sizes = _extract_input_shapes(input_values) slicer = ts.slice(ts.stack(sizes, axis: 1), [non_neg_concat_dim, 0], [1, -1]) sizes = ts.squeeze(slicer) out_grads = ts.split(grad, sizes, axis: non_neg_concat_dim, num: op.inputs.size - 1) end_value_index <= dim_index ? out_grads + [nil] : [nil] + out_grads end |
._Conv2DGrad(op, grad) ⇒ Object
284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 |
# File 'lib/tensor_stream/math_gradients.rb', line 284 def self._Conv2DGrad(op, grad) # dilations = op.get_attr("dilations") strides = op.[:strides] padding = op.[:padding] use_cudnn_on_gpu = op.[:use_cudnn_on_gpu] data_format = op.[:data_format] shape_0, shape_1 = ts.shape_n([op.inputs[0], op.inputs[1]]) [ _op(:conv2d_backprop_input, shape_0, op.inputs[1], grad, strides: strides, padding: padding, use_cudnn_on_gpu: use_cudnn_on_gpu, data_format: data_format), _op(:conv2d_backprop_filter, op.inputs[0], shape_1, grad, strides: strides, padding: padding, use_cudnn_on_gpu: use_cudnn_on_gpu, data_format: data_format), ] end |
._extract_input_shapes(inputs) ⇒ Object
248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 |
# File 'lib/tensor_stream/math_gradients.rb', line 248 def self._extract_input_shapes(inputs) sizes = [] fully_known = true inputs.each do |x| input_shape = ts.shape(x) unless input_shape.is_const fully_known = false break end sizes << input_shape.value end if fully_known sizes else ts.shape_n(inputs) end end |
._include?(arr, obj) ⇒ Boolean
243 244 245 246 |
# File 'lib/tensor_stream/math_gradients.rb', line 243 def self._include?(arr, obj) arr.each { |a| return true if a.equal?(obj) } false end |
._int32(node, x) ⇒ Object
184 185 186 |
# File 'lib/tensor_stream/math_gradients.rb', line 184 def self._int32(node, x) (node.inputs[0].data_type == :int32 ? x : TensorStream.cast(x, :int32)) end |
._min_or_max_grad(inputs, grad, selector_op) ⇒ Object
221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 |
# File 'lib/tensor_stream/math_gradients.rb', line 221 def self._min_or_max_grad(inputs, grad, selector_op) x = inputs[0] y = inputs[1] gdtype = grad.data_type sx = ts.shape(x) sy = ts.shape(y) gradshape = ts.shape(grad) zeros = ts.zeros(gradshape, dtype: gdtype) xmask = selector_op.call(x, y) rx, ry = _broadcast_gradient_args(sx, sy) xgrad = ts.where(xmask, grad, zeros, name: "x") ygrad = ts.where(xmask, zeros, grad, name: "y") gx = ts.reshape(ts.reduce_sum(xgrad, rx), sx) gy = ts.reshape(ts.reduce_sum(ygrad, ry), sy) [gx, gy] end |
._op_supports_broadcast?(node) ⇒ Boolean
216 217 218 219 |
# File 'lib/tensor_stream/math_gradients.rb', line 216 def self._op_supports_broadcast?(node) return true if %i[add sub div mul pow].include?(node.operation) false end |
._propagate(grad, tensor, stop_tensor, nodes_to_compute, stop_gradients = []) ⇒ Object
25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 |
# File 'lib/tensor_stream/math_gradients.rb', line 25 def self._propagate(grad, tensor, stop_tensor, nodes_to_compute, stop_gradients = []) return grad if stop_tensor.equal?(tensor) return nil if stop_gradients && _include?(stop_gradients, tensor) return nil unless tensor.is_a?(Operation) computed_op = _compute_derivative(tensor, grad) if computed_op.is_a?(Array) grads = computed_op.each_with_index.collect { |op_grad, index| next if op_grad.nil? next unless nodes_to_compute.include?(tensor.inputs[index].name) _propagate(op_grad, tensor.inputs[index], stop_tensor, nodes_to_compute, stop_gradients) }.compact return nil if grads.empty? grads.size > 1 ? ts.add_n(grads) : grads[0] else if computed_op.nil? return nil end _propagate(computed_op, tensor.inputs[0], stop_tensor, nodes_to_compute, stop_gradients) end end |
._reshape_to_input(node, grad) ⇒ Object
188 189 190 |
# File 'lib/tensor_stream/math_gradients.rb', line 188 def self._reshape_to_input(node, grad) ts.reshape(grad, ts.shape(node.inputs[0])) end |
._safe_shape_div(arg_x, arg_y) ⇒ Object
201 202 203 |
# File 'lib/tensor_stream/math_gradients.rb', line 201 def self._safe_shape_div(arg_x, arg_y) _op(:floor_div, arg_x, ts.maximum(arg_y, 1)) end |
._sum_grad(arg_x, arg_y, grad) ⇒ Object
205 206 207 208 209 210 211 212 213 214 |
# File 'lib/tensor_stream/math_gradients.rb', line 205 def self._sum_grad(arg_x, arg_y, grad) input_shape = _op(:shape, arg_x) output_shape_kept_dims = ts.reduced_shape(input_shape, arg_y) tile_scaling = _safe_shape_div(input_shape, output_shape_kept_dims) new_grad = _op(:reshape, grad, output_shape_kept_dims) grad = _op(:case, [_op(:rank, grad).zero?], _op(:tile, new_grad, tile_scaling), _op(:fill, input_shape, grad)) [grad, nil] end |
.derivative(tensor, wrt_dx, options = {}) ⇒ Object
11 12 13 14 15 16 17 18 19 20 21 22 23 |
# File 'lib/tensor_stream/math_gradients.rb', line 11 def self.derivative(tensor, wrt_dx, = {}) return i_op(:ones_like, tensor) if tensor.equal?(wrt_dx) return i_op(:zeros_like, wrt_dx) unless wrt_dx.consumers.include?(tensor.name) nodes_to_compute = wrt_dx.consumers.select { |t| node = tensor.graph.nodes[t] node.consumers.include?(tensor.name) || node.equal?(tensor) }.compact + [wrt_dx.name] grad = i_op(:fill, ts.shape(tensor), ts.constant(1, dtype: wrt_dx.data_type)) _propagate(grad, tensor, wrt_dx, nodes_to_compute, [:stop_gradients] || []) || i_op(:zeros_like, wrt_dx) end |
.ts ⇒ Object
7 8 9 |
# File 'lib/tensor_stream/math_gradients.rb', line 7 def self.ts TensorStream end |