Module: TensorStream::NNOps

Included in:
Evaluator::RubyEvaluator
Defined in:
lib/tensor_stream/evaluator/ruby/nn_ops.rb

Overview

Collection of machine learning related ops

Class Method Summary collapse

Class Method Details

.included(klass) ⇒ Object



4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
# File 'lib/tensor_stream/evaluator/ruby/nn_ops.rb', line 4

def self.included(klass)
  klass.class_eval do
    register_op :apply_gradient_descent do |context, tensor, inputs|
      target_var, learning_rate, delta = inputs
      assign = tensor.inputs[0] || tensor

      var_assign_value(assign, process_vector_math_op(tensor, target_var, delta, context) { |t, u| t - u * learning_rate })
    end

    register_op :apply_momentum do |_context, tensor, inputs|
      target_var, momentum_var, learning_rate, grad, momentum = inputs
      assign = tensor.inputs[0] || tensor
      assign_acc = tensor.inputs[1]
      var_assign_value(assign_acc, multi_array_op(->(t, u) { t * momentum + u }, momentum_var, grad))
      var = if tensor.options[:use_nesterov]
              multi_array_op(->(v, g, acc) { v - (g * learning_rate + acc * momentum * learning_rate) }, target_var, grad, momentum_var)
            else
              multi_array_op(->(v, acc) { v - acc * learning_rate }, target_var, momentum_var)
            end
      var_assign_value(assign, var)
    end

    register_op :apply_adadelta do |_context, tensor, inputs|
      target_var, accum, accum_update, lr, rho, epsilon, grad = inputs
      assign = tensor.inputs[0] || tensor
      assign_acc = tensor.inputs[1]
      assign_acc_update = tensor.inputs[2]
      acc_val = var_assign_value(assign_acc, multi_array_op(->(acc_t, grad_t) { acc_t * rho + (grad_t * grad_t) * (1.0 - rho) }, accum, grad))
      update = multi_array_op(->(acc_update_t, acc_t, grad_t) { Math.sqrt(acc_update_t + epsilon) * (1.0 / Math.sqrt(acc_t + epsilon)) * grad_t }, accum_update, acc_val, grad)
      result = var_assign_value(assign, multi_array_op(->(v, u) { v - (u * lr) }, target_var, update))
      var_assign_value(assign_acc_update,multi_array_op(->(acc_update_t, u) { acc_update_t * rho + (u * u) * (1.0 - rho) }, accum_update, update))

      result
    end

    register_op :apply_adagrad do |_context, tensor, inputs|
      target_var, accum, lr, grad = inputs
      assign = tensor.inputs[0] || tensor
      var_assign_value(assign, multi_array_op(->(v, a, g) { v - (g * lr * (1.0 / Math.sqrt(a))) }, target_var, accum, grad))
    end

    register_op :apply_adam do |_context, tensor, inputs|
      target_var, m, v, beta1_power, beta2_power, lr_t, beta1_t, beta2_t, epsilon_t, grad = inputs
      alpha = lr_t * Math.sqrt(1.0 - beta2_power) / (1.0 - beta1_power)
      assign = tensor.inputs[0]
      assign_m = tensor.inputs[1]
      assign_v = tensor.inputs[2]

      m_val = var_assign_value(assign_m, multi_array_op(->(u_d, g) { u_d + (g - u_d) * (1.0 - beta1_t) }, m, grad))
      v_val = var_assign_value(assign_v, multi_array_op(->(u_d, v_d) { u_d + (v_d**2 - u_d) * (1.0 - beta2_t)}, v, grad))
      var_assign_value(assign, multi_array_op(->(t, m_d, v_d) { t - ((m_d * alpha) / (Math.sqrt(v_d) + epsilon_t)) }, target_var, m_val, v_val))
    end

    register_op :apply_rms_prop do |_context, tensor, inputs|
      var, ms, mom, lr, rho, momentum, epsilon, grad = inputs
      assign = tensor.inputs[0]
      assign_ms = tensor.inputs[1]
      assign_mom = tensor.inputs[2]
      ms_val = var_assign_value(assign_ms, multi_array_op(->(g, m) { m + (g * g - m) * (1.0 - rho)}, grad, ms))
      mom_val = var_assign_value(assign_mom, multi_array_op(->(mom_t, g, m) { mom_t * momentum + (g * lr) / Math.sqrt(m + epsilon)}, mom, grad, ms_val))
      var_assign_value(assign, multi_array_op(->(v, m) { v - m }, var, mom_val))
    end

    register_op :apply_centered_rms_prop do |_context, tensor, inputs|
      var, mg, ms, mom, lr, rho, momentum, epsilon, grad = inputs
      assign = tensor.inputs[0]
      assign_mg = tensor.inputs[1]
      assign_ms = tensor.inputs[2]
      assign_mom = tensor.inputs[3]

      val_ms = var_assign_value(assign_ms, multi_array_op(->(g, m) { m + (g * g - m) * (1.0 - rho) }, grad, ms))
      var_assign_value(assign_mg, multi_array_op(->(g, mg_t) {  (g - mg_t) * (1.0 - rho) }, grad, mg))
      denom =  multi_array_op(->(s, mg_t) { (s - mg_t * mg_t) + epsilon }, val_ms, mg)
      val_mom = var_assign_value(assign_mom, multi_array_op(->(mom_t, g, d) { mom_t * momentum + (g * lr) / Math.sqrt(d)}, mom, grad, denom))
      var_assign_value(assign, multi_array_op(->(v, m) { v - m }, var, val_mom))
    end

    register_op %i[softmax_cross_entropy_with_logits_v2 softmax_cross_entropy_with_logits] do |_context, tensor, inputs|
      last_dimen_list = last_axis(inputs[0])
      input_shape = shape_eval(inputs[0])
      rank = input_shape.size - 1
      labels = last_axis(inputs[1])

      func = lambda { |logits, label|
        c = logits.max
        transformed_logits = logits.map { |l| l - c }
        sum = transformed_logits.map { |x| Math.exp(x) }.reduce(:+)
        losses = transformed_logits.zip(label).map { |x, y| (Math.log(sum) - x) * y }
        probs = transformed_logits.zip(label).map  { |x, y| (Math.exp(x) / sum) - y }
        [losses, probs]
      }

      if input_shape.size == 1
        loss, prob = func.call(last_dimen_list, labels)
        loss = reduce(loss, rank, false)
        TensorStream::Evaluator::OutputGroup.new([loss, prob], [tensor.inputs[0].data_type, tensor.inputs[0].data_type])
      else
        losses = []
        backprobs = []
        last_dimen_list.zip(labels).each do |list, label|
          loss, prob = func.call(list, label)
          losses << loss
          backprobs << prob
        end
        reshaped_losses = TensorShape.reshape(losses.flatten, input_shape)
        reshaped_backprops = TensorShape.reshape(backprobs.flatten, input_shape)
        reshaped_losses = reduce(reshaped_losses, rank, false) { |a| a.reduce(:+) }
        TensorStream::Evaluator::OutputGroup.new([reshaped_losses, reshaped_backprops], [tensor.inputs[0].data_type, tensor.inputs[0].data_type])
      end
    end

    register_op :sparse_softmax_cross_entropy_with_logits do |context, tensor, inputs|
      last_dimen_list = last_axis(inputs[0])
      input_shape = shape_eval(inputs[0])
      rank = input_shape.size - 1
      labels = last_axis(inputs[1])
      num_classes = input_shape.last

      labels = labels.map { |l|
        one_hot = Array.new(num_classes) { 0 }
        one_hot[l] = 1
        one_hot
      }

      func = lambda { |logits, label|
        c = logits.max
        transformed_logits = logits.map { |l| l - c }
        sum = transformed_logits.map { |x| Math.exp(x) }.reduce(:+)
        losses = transformed_logits.zip(label).map { |x, y| (Math.log(sum) - x) * y }
        probs = transformed_logits.zip(label).map  { |x, y| (Math.exp(x) / sum) - y }
        [losses, probs]
      }

      if input_shape.size == 1
        loss, prob = func.call(last_dimen_list, labels)
        loss = reduce(loss, rank, false)

        TensorStream::Evaluator::OutputGroup.new([loss, prob], [tensor.inputs[0].data_type, tensor.inputs[0].data_type])
      else
        losses = []
        backprobs = []
        arr = last_dimen_list.zip(labels).each do |list, label|
          loss, prob = func.call(list, label)
          losses << loss
          backprobs << prob
        end
        reshaped_losses = TensorShape.reshape(losses, input_shape)
        reshaped_backprops = TensorShape.reshape(backprobs, input_shape)
        reshaped_losses = reduce(reshaped_losses, rank, false)

        TensorStream::Evaluator::OutputGroup.new([reshaped_losses, reshaped_backprops], [tensor.inputs[0].data_type, tensor.inputs[0].data_type])
      end
    end

    register_op :log_softmax do |_context, _tensor, inputs|
      input_shape = shape_eval(inputs[0])
      last_dimen_list = last_axis(inputs[0])

      func = lambda { |logits|
        c = logits.max
        transformed_logits = logits.map { |l| l - c }
        sum = transformed_logits.map { |x| Math.exp(x) }.reduce(:+)
        transformed_logits.map { |x| x - Math.log(sum) }
      }

      if input_shape.size == 1
        func.call(last_dimen_list)
      else
        arr = last_dimen_list.collect { |list|
          func.call(list)
        }
        TensorShape.reshape(arr, input_shape)
      end
    end

    register_op :softmax_grad do |_context, _tensor, inputs|
      input, grad = inputs
      softmax_input = softmax(input)
      input_shape = shape_eval(input)

      last_dimen_list = last_axis(softmax_input)
      last_grad_list = last_axis(grad)

      func = lambda { |list, last_grad|
        f_grad = softmax_grad(list)
        f_grad.transpose.each.collect do |row|
          sum = 0.0
          row.each_with_index do |r, g_index|
            sum += r * last_grad[g_index]
          end
          sum
        end
      }

      if input_shape.size == 1
        func.call(last_dimen_list, last_grad_list)
      else
        arr = last_dimen_list.zip(last_grad_list).collect { |list, last_grad|
          func.call(list, last_grad)
        }
        TensorShape.reshape(arr, input_shape)
      end
    end

    register_op :relu6 do |context, tensor, inputs|
      call_vector_op(tensor, :relu6, inputs[0], inputs[1], context) { |t, u| [[t, 0].max, 6].min }
    end

    register_op :conv2d do |_context, tensor, inputs|
      filter = inputs[1]

      filter_shape = shape_eval(filter)
      strides = tensor.options[:strides]
      padding_option = tensor.options[:padding]
      height_stride = strides[1]
      width_stride = strides[2]

      raise TensorStream::ValueError, " Current implementation does not yet support strides in the batch and depth dimensions." if strides[0] != 1 || strides[3] != 1

      _batch, height, width, _channels = shape_eval(inputs[0])
      padding = conv2d_padding_options(padding_option, filter_shape, height, width, height_stride, width_stride)
      inputs[0].collect { |image|
        f_height, f_width, _input_channels, _output_channels = filter_shape
        (-padding[0]...height).step(height_stride).map { |y|
          next if (y + f_height) > (height + padding[2])

          (-padding[1]...width).step(width_stride).map { |x|
            next if (x + f_width) > (width + padding[3])

            filter_result = (0...f_height).map { |f_y|
              (0...f_width).map { |f_x|
                f_element = filter[f_y][f_x]

                next if (x + f_x >= width) || (x + f_x < 0)
                next if (y + f_y >= height) || (y + f_y < 0)

                image[y + f_y][x + f_x].zip(f_element).map do |image_channel, filter_channels|
                  filter_channels.map { |c| image_channel * c }
                end
              }.compact
            }.flatten(2)

            filter_result.transpose.map { |e| e.reduce(:+) }
          }.compact
        }.compact
      }.compact
    end

    register_op :conv2d_backprop_input do |_context, tensor, inputs|
      image_shape, filter, grad = inputs
      strides = tensor.options[:strides]
      padding_option = tensor.options[:padding]
      height_stride = strides[1]
      width_stride = strides[2]

      filter_shape = shape_eval(filter)

      f_height, f_width, _input_channels, output_channels = filter_shape
      batch, height, width, channels = image_shape

      padding = conv2d_padding_options(padding_option, filter_shape, height, width, height_stride, width_stride)

      Array.new(batch) do |b|
        image_gradient = TensorShape.reshape(Array.new(height * width * channels) { 0.0 }, [height, width, channels])

        ((0 - padding[0])...height).step(height_stride).each do |y|
          next if (y + f_height) > (height + padding[2])

          ((0 - padding[1])...width).step(width_stride).each do |x|
            next if (x + f_width) > (width + padding[3])

            (0...f_height).each do |f_y|
              (0...f_width).each do |f_x|
                next if (y + f_y) < 0 || (y + f_y) >= height
                next if (x + f_x) < 0 || (x + f_x) >= width

                img_grad = grad[b][(y + padding[0]) / height_stride][(x + padding[1]) / width_stride]

                channels.times.each do |c|
                  g = Array.new(output_channels) { |o_c|
                    filter[f_y][f_x][c][o_c] * img_grad[o_c]
                  }.reduce(:+)

                  image_gradient[y + f_y][x + f_x][c] += g
                end
              end
            end
          end
        end

        image_gradient
      end
    end

    register_op :conv2d_backprop_filter do |_context, tensor, inputs|
      images, filter_shape, grad = inputs

      strides = tensor.options[:strides]
      padding_option = tensor.options[:padding]
      height_stride = strides[1]
      width_stride = strides[2]

      filter_gradient_sum = Array.new(filter_shape.reduce(:*)) { 0.0 }

      _batch, height, width, _channels = shape_eval(images)
      padding = conv2d_padding_options(padding_option, filter_shape, height, width, height_stride, width_stride)

      images.each_with_index.map do |image, index|
        f_height, f_width, input_channels, output_channels = filter_shape

        ((0 - padding[0])...height).step(height_stride).each do |y|
          ((0 - padding[1])...width).step(width_stride).each do |x|
            filter_result = (0...f_height).map { |f_y|
              (0...f_width).map do |f_x|
                next Array.new(input_channels * output_channels) { 0.0 } if x + f_x >= width || (x + f_x < 0) || ((x + f_width) > (width + padding[3]))
                next Array.new(input_channels * output_channels) { 0.0 } if y + f_y >= height || (y + f_y < 0) || ((y + f_height) > (height + padding[2]))

                image_grad = grad[index][(y + padding[0]) / height_stride][(x + padding[1]) / width_stride]
                image[y + f_y][x + f_x].map do |image_channel|
                  Array.new(output_channels) do |o_c|
                    image_channel * image_grad[o_c]
                  end
                end
              end
            }.flatten

            filter_gradient_sum = multi_array_op(->(a, b) { a + b }, filter_gradient_sum, filter_result)
          end
        end
      end

      TensorShape.reshape(filter_gradient_sum, filter_shape)
    end

    def conv2d_padding_options(padding_option, filter_shape, height, width, h_stride, w_stride)
      case padding_option
      when "SAME"
        [
          calc_pad(height, h_stride, filter_shape[0]),
          calc_pad(width, w_stride, filter_shape[1]),
          calc_pad(height, h_stride, filter_shape[0], true),
          calc_pad(width, w_stride, filter_shape[1], true),
        ]
      when "VALID"
        [0, 0, 0, 0]
      else
        raise TensorStream::ValueError, "Unsupported padding value #{padding_option}, valid values 'SAME', 'VALID'"
      end
    end

    def calc_pad(w, stride, f_shape, ceil = false)
      r = ((w / stride - 1) * stride - w + f_shape)
      if ceil
        r.odd? ? r / 2 + 1 : r / 2
      else
        r / 2
      end
    end
  end
end