Class: TensorStream::Session

Inherits:
Object
  • Object
show all
Includes:
StringHelper
Defined in:
lib/tensor_stream/session.rb

Overview

TensorStream class that defines a session

Instance Attribute Summary collapse

Class Method Summary collapse

Instance Method Summary collapse

Methods included from StringHelper

#camelize, #constantize, #symbolize_keys, #underscore

Constructor Details

#initialize(evaluator = nil, thread_pool_class: Concurrent::ImmediateExecutor, log_device_placement: false, profile_enabled: false, evaluator_options: {}) ⇒ Session

Returns a new instance of Session.



9
10
11
12
13
14
15
16
17
18
# File 'lib/tensor_stream/session.rb', line 9

def initialize(evaluator = nil, thread_pool_class: Concurrent::ImmediateExecutor, log_device_placement: false, profile_enabled: false, evaluator_options: {})
  @thread_pool = thread_pool_class.new
  @closed = false
  @session_cache = {}
  @randomizer = {}
  @log_device_placement = log_device_placement
  @evaluator_options = evaluator_options.merge(profile_enabled: profile_enabled)
  get_evaluator_classes(evaluator)
  @evaluators = {}
end

Instance Attribute Details

#closedObject (readonly)

Returns the value of attribute closed.



6
7
8
# File 'lib/tensor_stream/session.rb', line 6

def closed
  @closed
end

#last_session_contextObject (readonly)

Returns the value of attribute last_session_context.



6
7
8
# File 'lib/tensor_stream/session.rb', line 6

def last_session_context
  @last_session_context
end

#randomizerObject

Returns the value of attribute randomizer.



7
8
9
# File 'lib/tensor_stream/session.rb', line 7

def randomizer
  @randomizer
end

#session_cacheObject (readonly)

Returns the value of attribute session_cache.



6
7
8
# File 'lib/tensor_stream/session.rb', line 6

def session_cache
  @session_cache
end

#targetObject (readonly)

Returns the value of attribute target.



6
7
8
# File 'lib/tensor_stream/session.rb', line 6

def target
  @target
end

Class Method Details

.default_sessionObject



28
29
30
# File 'lib/tensor_stream/session.rb', line 28

def self.default_session
  @session ||= Session.new
end

Instance Method Details

#assign_evaluator(tensor) ⇒ Object



137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
# File 'lib/tensor_stream/session.rb', line 137

def assign_evaluator(tensor)
  device = @evaluator_classes.map { |klass|
    next nil if tensor.is_a?(Operation) && !klass.ops.include?(tensor.operation.to_sym)
    next klass.default_device if tensor.device.nil?

    klass.query_device(tensor.device)
  }.compact.first

  raise "no evaluator available to execute #{tensor.operation}" if device.nil?

  key = "#{device.evaluator}/#{device.name}"
  if @evaluators.key?(key)
    @evaluators[key]
  else
    @evaluators[key] = [device, device.evaluator.new(self, device)]
  end
end

#clear_session_cacheObject



24
25
26
# File 'lib/tensor_stream/session.rb', line 24

def clear_session_cache
  @session_cache = {}
end

#closeObject



91
92
93
94
95
96
# File 'lib/tensor_stream/session.rb', line 91

def close
  # unlink resources to save memory
  @last_session_context = nil
  @session_cache = {}
  @closed = true
end

#closed?Boolean

Returns:

  • (Boolean)


98
99
100
# File 'lib/tensor_stream/session.rb', line 98

def closed?
  @closed
end

#delegate_to_evaluator(tensor_arr, session_context, context) ⇒ Object



123
124
125
126
127
128
129
130
131
132
133
134
135
# File 'lib/tensor_stream/session.rb', line 123

def delegate_to_evaluator(tensor_arr, session_context, context)
  if tensor_arr.is_a?(Array)
    tensor_arr.collect do |tensor|
      if tensor.is_a?(Array)
        delegate_to_evaluator(tensor, session_context, context)
      else
        run_with_session_context(tensor, session_context, context)
      end
    end
  else
    run_with_session_context(tensor_arr.op, session_context, context)
  end
end

#dump_internal_ops(tensor) ⇒ Object



102
103
104
# File 'lib/tensor_stream/session.rb', line 102

def dump_internal_ops(tensor)
  dump_ops(tensor, ->(_k, n) { n.is_a?(Tensor) && n.internal? })
end

#dump_ops(tensor, selector) ⇒ Object



110
111
112
113
114
115
116
117
# File 'lib/tensor_stream/session.rb', line 110

def dump_ops(tensor, selector)
  graph = tensor.graph
  graph.nodes.select { |k, v| selector.call(k, v) }.collect { |k, node|
    next unless @last_session_context[node.name]

    "#{k} #{node.to_math(true, 1)} = #{@last_session_context[node.name]}"
  }.compact
end

#dump_user_ops(tensor) ⇒ Object



106
107
108
# File 'lib/tensor_stream/session.rb', line 106

def dump_user_ops(tensor)
  dump_ops(tensor, ->(_k, n) { n.is_a?(Tensor) && !n.internal? })
end

#get_evaluator_classes(evaluators) ⇒ Object



20
21
22
# File 'lib/tensor_stream/session.rb', line 20

def get_evaluator_classes(evaluators)
  @evaluator_classes = TensorStream::EvaluatorUtils.get_evaluator_classes(evaluators)
end

#graph_ml(tensor, filename) ⇒ Object



119
120
121
# File 'lib/tensor_stream/session.rb', line 119

def graph_ml(tensor, filename)
  TensorStream::Graphml.new(self).serialize(tensor, filename)
end

#list_devicesObject



83
84
85
86
87
88
89
# File 'lib/tensor_stream/session.rb', line 83

def list_devices
  TensorStream::Evaluator.evaluators.collect { |_k, v|
    v[:class].query_supported_devices.collect do |device|
      device
    end
  }.flatten
end

#run(*args) ⇒ Object



32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
# File 'lib/tensor_stream/session.rb', line 32

def run(*args)
  options = if args.last.is_a?(Hash)
    args.pop
  else
    {}
  end

  @evaluator_options[:thread_pool] = @thread_pool
  @evaluator_options[:log_intermediates] = options[:log_intermediates]

  context = {
    _cache: @session_cache,
    _options: options.merge(@evaluator_options),
    profile: {step: 0, operations: {}},
  }

  # scan for placeholders and assign value
  options[:feed_dict]&.each_key do |k|
    if k.is_a?(Placeholder)
      ph = options[:feed_dict][k]
      context[k.name.to_sym] = ph.is_a?(Tensor) ? ph.op : ph
    elsif k.is_a?(String)
      target_graph = args[0].graph
      node = target_graph.get_node(k)
      raise "Cannot find placeholder with the name of #{k}" if node.operation != :placeholder

      context[k.to_sym] = options[:feed_dict][k]
    elsif k.is_a?(Operation) && k.operation == :placeholder
      context[k.name.to_sym] = options[:feed_dict][k]
    else
      raise "Invalid placeholder type passed key must be a string or a placeholder type"
    end
  end

  args.each { |t| prepare_evaluators(t, context) }
  @last_session_context = context

  if @log_device_placement
    context[:_cache][:placement].each do |k, v|
      puts "#{k} : #{v[0].name}"
    end
  end
  result = args.collect { |e|
    next e.value if e.is_a?(Tensor) && e.is_const && e.value

    value = delegate_to_evaluator(e, context, {})
    recursive_eval(value)
  }
  args.size == 1 ? result.first : result
end