Class: TensorStream::Train::RMSPropOptimizer
- Includes:
- OpHelper
- Defined in:
- lib/tensor_stream/train/rmsprop_optimizer.rb
Overview
High Level implementation of the RMSProp algorithm This is a straight port from TensorFlows rmsprop.py
Instance Attribute Summary collapse
-
#learning_rate ⇒ Object
Returns the value of attribute learning_rate.
Attributes inherited from Optimizer
Instance Method Summary collapse
-
#initialize(learning_rate, decay = 0.9, momentum = 0.0, epsilon = 1e-10, centered: false, use_locking: false, name: "RMSProp") ⇒ RMSPropOptimizer
constructor
Optimizer that implements the RMSProp algorithm.
Methods included from OpHelper
#_op, #cons, #format_source, #fp_type?, #i_cons, #i_op, #i_var, #int_type?, #reduced_shape, #shape_eval, #shape_full_specified, #shapes_fully_specified_and_equal
Methods inherited from Optimizer
#apply_gradients, #compute_gradients, #get_slot, #get_slot_names, #minimize
Methods included from SlotCreator
#create_slot, #create_slot_var, #create_slot_with_initializer, #create_zeros_slot
Methods included from Utils
#__v_scope_name, #apply_data_type_coercion, #assign, #check_allowed_types, #check_data_types, #check_if_dense, #colocate_with, #constant, #control_dependencies, #convert_to_tensor, #device, #disable_eager_execution, #dynamic_stitch, #enable_eager_execution, #executing_eagerly?, #float32, #get_collection, #get_default_graph, #get_variable, #get_variable_scope, #global_variables_initializer, #graph, #group, #image, #layers, #list_local_devices, #math, #name_scope, #placeholder, #program, #reset_default_graph, #session, #set_random_seed, #train, #trainable_variables, #variable, #variable_scope
Constructor Details
#initialize(learning_rate, decay = 0.9, momentum = 0.0, epsilon = 1e-10, centered: false, use_locking: false, name: "RMSProp") ⇒ RMSPropOptimizer
Optimizer that implements the RMSProp algorithm.
[paper](www.cs.toronto.edu/~tijmen/csc321/slides/lecture_slides_lec6.pdf).
14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 |
# File 'lib/tensor_stream/train/rmsprop_optimizer.rb', line 14 def initialize(learning_rate, decay = 0.9, momentum = 0.0, epsilon = 1e-10, centered: false, use_locking: false, name: "RMSProp") @learning_rate = learning_rate @decay = decay @momentum = momentum @epsilon = epsilon @centered = centered # Tensor versions of the constructor arguments, created in _prepare(). @learning_rate_tensor = nil @decay_tensor = nil @momentum_tensor = nil @epsilon_tensor = nil super(name: name, use_locking: use_locking) end |
Instance Attribute Details
#learning_rate ⇒ Object
Returns the value of attribute learning_rate.
8 9 10 |
# File 'lib/tensor_stream/train/rmsprop_optimizer.rb', line 8 def learning_rate @learning_rate end |