Module: Torch
- Defined in:
- lib/torch/inspector.rb,
lib/torch.rb,
lib/torch/hub.rb,
lib/torch/nn/gru.rb,
lib/torch/nn/rnn.rb,
lib/torch/tensor.rb,
lib/torch/nn/fold.rb,
lib/torch/nn/init.rb,
lib/torch/nn/loss.rb,
lib/torch/nn/lstm.rb,
lib/torch/nn/relu.rb,
lib/torch/nn/tanh.rb,
lib/torch/version.rb,
lib/torch/nn/prelu.rb,
lib/torch/nn/utils.rb,
lib/torch/nn/conv1d.rb,
lib/torch/nn/conv2d.rb,
lib/torch/nn/conv3d.rb,
lib/torch/nn/convnd.rb,
lib/torch/nn/linear.rb,
lib/torch/nn/module.rb,
lib/torch/nn/unfold.rb,
lib/torch/optim/sgd.rb,
lib/torch/nn/dropout.rb,
lib/torch/nn/l1_loss.rb,
lib/torch/nn/sigmoid.rb,
lib/torch/nn/softmax.rb,
lib/torch/nn/softmin.rb,
lib/torch/optim/adam.rb,
lib/torch/optim/asgd.rb,
lib/torch/utils/data.rb,
lib/torch/nn/bce_loss.rb,
lib/torch/nn/bilinear.rb,
lib/torch/nn/ctc_loss.rb,
lib/torch/nn/identity.rb,
lib/torch/nn/mse_loss.rb,
lib/torch/nn/nll_loss.rb,
lib/torch/nn/rnn_base.rb,
lib/torch/nn/softplus.rb,
lib/torch/nn/softsign.rb,
lib/torch/nn/upsample.rb,
lib/torch/optim/adamw.rb,
lib/torch/optim/rprop.rb,
lib/torch/nn/dropout2d.rb,
lib/torch/nn/dropout3d.rb,
lib/torch/nn/dropoutnd.rb,
lib/torch/nn/embedding.rb,
lib/torch/nn/lp_pool1d.rb,
lib/torch/nn/lp_pool2d.rb,
lib/torch/nn/lp_poolnd.rb,
lib/torch/nn/parameter.rb,
lib/torch/nn/softmax2d.rb,
lib/torch/optim/adamax.rb,
lib/torch/nn/avg_pool1d.rb,
lib/torch/nn/avg_pool2d.rb,
lib/torch/nn/avg_pool3d.rb,
lib/torch/nn/avg_poolnd.rb,
lib/torch/nn/batch_norm.rb,
lib/torch/nn/functional.rb,
lib/torch/nn/group_norm.rb,
lib/torch/nn/hardshrink.rb,
lib/torch/nn/layer_norm.rb,
lib/torch/nn/leaky_relu.rb,
lib/torch/nn/max_pool1d.rb,
lib/torch/nn/max_pool2d.rb,
lib/torch/nn/max_pool3d.rb,
lib/torch/nn/max_poolnd.rb,
lib/torch/nn/sequential.rb,
lib/torch/nn/softshrink.rb,
lib/torch/nn/tanhshrink.rb,
lib/torch/nn/zero_pad2d.rb,
lib/torch/optim/adagrad.rb,
lib/torch/optim/rmsprop.rb,
lib/torch/nn/kl_div_loss.rb,
lib/torch/nn/log_sigmoid.rb,
lib/torch/nn/log_softmax.rb,
lib/torch/nn/module_list.rb,
lib/torch/nn/transformer.rb,
lib/torch/optim/adadelta.rb,
lib/torch/nn/batch_norm1d.rb,
lib/torch/nn/batch_norm2d.rb,
lib/torch/nn/batch_norm3d.rb,
lib/torch/nn/max_unpool1d.rb,
lib/torch/nn/max_unpool2d.rb,
lib/torch/nn/max_unpool3d.rb,
lib/torch/nn/max_unpoolnd.rb,
lib/torch/optim/optimizer.rb,
lib/torch/nn/alpha_dropout.rb,
lib/torch/nn/embedding_bag.rb,
lib/torch/nn/instance_norm.rb,
lib/torch/nn/weighted_loss.rb,
lib/torch/nn/constant_pad1d.rb,
lib/torch/nn/constant_pad2d.rb,
lib/torch/nn/constant_pad3d.rb,
lib/torch/nn/constant_padnd.rb,
lib/torch/nn/parameter_list.rb,
lib/torch/nn/smooth_l1_loss.rb,
lib/torch/utils/data/subset.rb,
lib/torch/nn/instance_norm1d.rb,
lib/torch/nn/instance_norm2d.rb,
lib/torch/nn/instance_norm3d.rb,
lib/torch/utils/data/dataset.rb,
lib/torch/nn/poisson_nll_loss.rb,
lib/torch/nn/reflection_pad1d.rb,
lib/torch/nn/reflection_pad2d.rb,
lib/torch/nn/reflection_padnd.rb,
lib/torch/nn/soft_margin_loss.rb,
lib/torch/nn/cosine_similarity.rb,
lib/torch/nn/multi_margin_loss.rb,
lib/torch/nn/pairwise_distance.rb,
lib/torch/nn/replication_pad1d.rb,
lib/torch/nn/replication_pad2d.rb,
lib/torch/nn/replication_pad3d.rb,
lib/torch/nn/replication_padnd.rb,
lib/torch/nn/cross_entropy_loss.rb,
lib/torch/nn/adaptive_avg_pool1d.rb,
lib/torch/nn/adaptive_avg_pool2d.rb,
lib/torch/nn/adaptive_avg_pool3d.rb,
lib/torch/nn/adaptive_avg_poolnd.rb,
lib/torch/nn/adaptive_max_pool1d.rb,
lib/torch/nn/adaptive_max_pool2d.rb,
lib/torch/nn/adaptive_max_pool3d.rb,
lib/torch/nn/adaptive_max_poolnd.rb,
lib/torch/nn/local_response_norm.rb,
lib/torch/nn/margin_ranking_loss.rb,
lib/torch/nn/multihead_attention.rb,
lib/torch/nn/transformer_decoder.rb,
lib/torch/nn/transformer_encoder.rb,
lib/torch/nn/triplet_margin_loss.rb,
lib/torch/utils/data/data_loader.rb,
lib/torch/nn/bce_with_logits_loss.rb,
lib/torch/nn/functional_attention.rb,
lib/torch/nn/hinge_embedding_loss.rb,
lib/torch/nn/cosine_embedding_loss.rb,
lib/torch/nn/feature_alpha_dropout.rb,
lib/torch/utils/data/tensor_dataset.rb,
lib/torch/nn/multi_label_margin_loss.rb,
lib/torch/optim/lr_scheduler/step_lr.rb,
lib/torch/utils/data/iterable_dataset.rb,
lib/torch/nn/transformer_decoder_layer.rb,
lib/torch/nn/transformer_encoder_layer.rb,
lib/torch/optim/lr_scheduler/lambda_lr.rb,
lib/torch/nn/multi_label_soft_margin_loss.rb,
lib/torch/optim/lr_scheduler/lr_scheduler.rb,
lib/torch/optim/lr_scheduler/multi_step_lr.rb,
lib/torch/optim/lr_scheduler/exponential_lr.rb,
lib/torch/optim/lr_scheduler/multiplicative_lr.rb,
lib/torch/utils/data/data_pipes/iter_data_pipe.rb,
lib/torch/optim/lr_scheduler/cosine_annealing_lr.rb,
lib/torch/utils/data/data_pipes/iter/file_lister.rb,
lib/torch/utils/data/data_pipes/iter/file_opener.rb,
lib/torch/utils/data/data_pipes/iter/stream_wrapper.rb,
lib/torch/utils/data/data_pipes/filter_iter_data_pipe.rb,
lib/torch/utils/data/data_pipes/iter/iterable_wrapper.rb
Overview
Defined Under Namespace
Modules: Autograd, Hub, Inspector, NN, Optim, Utils
Classes: ByteStorage, Error, NotImplementedYet, Tensor
Constant Summary
collapse
- DTYPE_TO_ENUM =
{
uint8: 0,
int8: 1,
short: 2,
int16: 2,
int: 3,
int32: 3,
long: 4,
int64: 4,
half: 5,
float16: 5,
float: 6,
float32: 6,
double: 7,
float64: 7,
complex_half: 8,
complex32: 8,
complex_float: 9,
complex64: 9,
complex_double: 10,
cdouble: 10,
complex128: 10,
bool: 11,
qint8: 12,
quint8: 13,
qint32: 14,
bfloat16: 15
}
- ENUM_TO_DTYPE =
DTYPE_TO_ENUM.map(&:reverse).to_h
- TENSOR_TYPE_CLASSES =
[]
- DTYPE_TO_CLASS =
{
float32: "FloatTensor",
float64: "DoubleTensor",
float16: "HalfTensor",
uint8: "ByteTensor",
int8: "CharTensor",
int16: "ShortTensor",
int32: "IntTensor",
int64: "LongTensor",
bool: "BoolTensor"
}
- VERSION =
"0.14.1"
Class Method Summary
collapse
Class Method Details
._dtype_to_numo ⇒ Object
private use method for cases when Numo not available or available after Torch loaded
349
350
351
352
353
354
355
356
357
358
359
360
361
|
# File 'lib/torch.rb', line 349
def _dtype_to_numo
raise Error, "Numo not found" unless defined?(Numo::NArray)
{
uint8: Numo::UInt8,
int8: Numo::Int8,
int16: Numo::Int16,
int32: Numo::Int32,
int64: Numo::Int64,
float32: Numo::SFloat,
float64: Numo::DFloat
}
end
|
._from_blob_ref(data, size, options) ⇒ Object
private TODO use keepAlive in Rice (currently segfaults)
337
338
339
340
341
342
343
344
|
# File 'lib/torch.rb', line 337
def _from_blob_ref(data, size, options)
tensor = _from_blob(data, size, options)
tensor.instance_variable_set("@_numo_data", data)
tensor
end
|
._make_tensor_class(dtype, cuda = false) ⇒ Object
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
|
# File 'lib/torch.rb', line 271
def self._make_tensor_class(dtype, cuda = false)
cls = Class.new
device = cuda ? "cuda" : "cpu"
cls.define_singleton_method("new") do |*args|
if args.size == 1 && args.first.is_a?(Tensor)
args.first.send(dtype).to(device)
elsif args.size == 1 && args.first.is_a?(ByteStorage) && dtype == :uint8
bytes = args.first.bytes
Torch._from_blob_ref(bytes, [bytes.bytesize], TensorOptions.new.dtype(DTYPE_TO_ENUM[dtype]))
elsif args.size == 1 && args.first.is_a?(Array)
Torch.tensor(args.first, dtype: dtype, device: device)
elsif args.size == 0
Torch.empty(0, dtype: dtype, device: device)
else
Torch.empty(*args, dtype: dtype, device: device)
end
end
TENSOR_TYPE_CLASSES << cls
cls
end
|
.device(str) ⇒ Object
382
383
384
|
# File 'lib/torch.rb', line 382
def device(str)
Device.new(str)
end
|
.enable_grad(&block) ⇒ Object
367
368
369
|
# File 'lib/torch.rb', line 367
def enable_grad(&block)
grad_enabled(true, &block)
end
|
.from_numo(ndarray) ⇒ Object
327
328
329
330
331
332
333
|
# File 'lib/torch.rb', line 327
def from_numo(ndarray)
dtype = _dtype_to_numo.find { |k, v| ndarray.is_a?(v) }
raise Error, "Cannot convert #{ndarray.class.name} to tensor" unless dtype
options = tensor_options(device: "cpu", dtype: dtype[0])
_from_blob_ref(ndarray.to_string, ndarray.shape, options)
end
|
.grad_enabled(value) ⇒ Object
Also known as:
set_grad_enabled
371
372
373
374
375
376
377
378
379
|
# File 'lib/torch.rb', line 371
def grad_enabled(value)
previous_value = grad_enabled?
begin
_set_grad_enabled(value)
yield
ensure
_set_grad_enabled(previous_value)
end
end
|
.load(filename) ⇒ Object
390
391
392
393
394
395
|
# File 'lib/torch.rb', line 390
def load(filename)
File.open(filename, "rb") { |f| f.read(1) }
to_ruby(_load(filename))
end
|
.no_grad(&block) ⇒ Object
363
364
365
|
# File 'lib/torch.rb', line 363
def no_grad(&block)
grad_enabled(false, &block)
end
|
.save(obj, f) ⇒ Object
386
387
388
|
# File 'lib/torch.rb', line 386
def save(obj, f)
File.binwrite(f, _save(to_ivalue(obj)))
end
|
.tensor(data, **options) ⇒ Object
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
|
# File 'lib/torch.rb', line 397
def tensor(data, **options)
if options[:dtype].nil? && defined?(Numo::NArray) && data.is_a?(Numo::NArray)
numo_to_dtype = _dtype_to_numo.map(&:reverse).to_h
options[:dtype] = numo_to_dtype[data.class]
end
size = []
if data.respond_to?(:to_a)
data = data.to_a
d = data
while d.is_a?(Array)
size << d.size
d = d.first
end
data = data.flatten
else
data = [data].compact
end
if options[:dtype].nil?
if data.all? { |v| v.is_a?(Integer) }
options[:dtype] = :int64
elsif data.all? { |v| v == true || v == false }
options[:dtype] = :bool
elsif data.any? { |v| v.is_a?(Complex) }
options[:dtype] = :complex64
end
end
raise Error, "Inconsistent dimensions" if data.size != size.inject(1, :*)
data = data.map { |v| v ? 1 : 0 } if options[:dtype] == :bool
_tensor(data, size, tensor_options(**options))
end
|
.tensor?(obj) ⇒ Boolean
323
324
325
|
# File 'lib/torch.rb', line 323
def tensor?(obj)
obj.is_a?(Tensor)
end
|