Module: Torch
- Defined in:
- lib/torch/inspector.rb,
lib/torch.rb,
lib/torch/hub.rb,
lib/torch/nn/elu.rb,
lib/torch/nn/gru.rb,
lib/torch/nn/rnn.rb,
lib/torch/tensor.rb,
lib/torch/nn/fold.rb,
lib/torch/nn/gelu.rb,
lib/torch/nn/init.rb,
lib/torch/nn/loss.rb,
lib/torch/nn/lstm.rb,
lib/torch/nn/relu.rb,
lib/torch/nn/tanh.rb,
lib/torch/version.rb,
lib/torch/nn/prelu.rb,
lib/torch/nn/utils.rb,
lib/torch/nn/conv1d.rb,
lib/torch/nn/conv2d.rb,
lib/torch/nn/conv3d.rb,
lib/torch/nn/convnd.rb,
lib/torch/nn/linear.rb,
lib/torch/nn/module.rb,
lib/torch/nn/unfold.rb,
lib/torch/optim/sgd.rb,
lib/torch/nn/dropout.rb,
lib/torch/nn/l1_loss.rb,
lib/torch/nn/sigmoid.rb,
lib/torch/nn/softmax.rb,
lib/torch/nn/softmin.rb,
lib/torch/optim/adam.rb,
lib/torch/optim/asgd.rb,
lib/torch/utils/data.rb,
lib/torch/nn/bce_loss.rb,
lib/torch/nn/bilinear.rb,
lib/torch/nn/ctc_loss.rb,
lib/torch/nn/identity.rb,
lib/torch/nn/mse_loss.rb,
lib/torch/nn/nll_loss.rb,
lib/torch/nn/rnn_base.rb,
lib/torch/nn/softplus.rb,
lib/torch/nn/softsign.rb,
lib/torch/nn/upsample.rb,
lib/torch/optim/adamw.rb,
lib/torch/optim/rprop.rb,
lib/torch/nn/dropout2d.rb,
lib/torch/nn/dropout3d.rb,
lib/torch/nn/dropoutnd.rb,
lib/torch/nn/embedding.rb,
lib/torch/nn/lp_pool1d.rb,
lib/torch/nn/lp_pool2d.rb,
lib/torch/nn/lp_poolnd.rb,
lib/torch/nn/parameter.rb,
lib/torch/nn/softmax2d.rb,
lib/torch/optim/adamax.rb,
lib/torch/nn/avg_pool1d.rb,
lib/torch/nn/avg_pool2d.rb,
lib/torch/nn/avg_pool3d.rb,
lib/torch/nn/avg_poolnd.rb,
lib/torch/nn/batch_norm.rb,
lib/torch/nn/functional.rb,
lib/torch/nn/group_norm.rb,
lib/torch/nn/hardshrink.rb,
lib/torch/nn/layer_norm.rb,
lib/torch/nn/leaky_relu.rb,
lib/torch/nn/max_pool1d.rb,
lib/torch/nn/max_pool2d.rb,
lib/torch/nn/max_pool3d.rb,
lib/torch/nn/max_poolnd.rb,
lib/torch/nn/sequential.rb,
lib/torch/nn/softshrink.rb,
lib/torch/nn/tanhshrink.rb,
lib/torch/nn/zero_pad2d.rb,
lib/torch/optim/adagrad.rb,
lib/torch/optim/rmsprop.rb,
lib/torch/nn/kl_div_loss.rb,
lib/torch/nn/log_sigmoid.rb,
lib/torch/nn/log_softmax.rb,
lib/torch/nn/module_list.rb,
lib/torch/nn/transformer.rb,
lib/torch/optim/adadelta.rb,
lib/torch/nn/batch_norm1d.rb,
lib/torch/nn/batch_norm2d.rb,
lib/torch/nn/batch_norm3d.rb,
lib/torch/nn/max_unpool1d.rb,
lib/torch/nn/max_unpool2d.rb,
lib/torch/nn/max_unpool3d.rb,
lib/torch/nn/max_unpoolnd.rb,
lib/torch/optim/optimizer.rb,
lib/torch/nn/alpha_dropout.rb,
lib/torch/nn/embedding_bag.rb,
lib/torch/nn/instance_norm.rb,
lib/torch/nn/weighted_loss.rb,
lib/torch/nn/constant_pad1d.rb,
lib/torch/nn/constant_pad2d.rb,
lib/torch/nn/constant_pad3d.rb,
lib/torch/nn/constant_padnd.rb,
lib/torch/nn/parameter_list.rb,
lib/torch/nn/smooth_l1_loss.rb,
lib/torch/utils/data/subset.rb,
lib/torch/nn/instance_norm1d.rb,
lib/torch/nn/instance_norm2d.rb,
lib/torch/nn/instance_norm3d.rb,
lib/torch/utils/data/dataset.rb,
lib/torch/nn/poisson_nll_loss.rb,
lib/torch/nn/reflection_pad1d.rb,
lib/torch/nn/reflection_pad2d.rb,
lib/torch/nn/reflection_padnd.rb,
lib/torch/nn/soft_margin_loss.rb,
lib/torch/nn/cosine_similarity.rb,
lib/torch/nn/multi_margin_loss.rb,
lib/torch/nn/pairwise_distance.rb,
lib/torch/nn/replication_pad1d.rb,
lib/torch/nn/replication_pad2d.rb,
lib/torch/nn/replication_pad3d.rb,
lib/torch/nn/replication_padnd.rb,
lib/torch/nn/cross_entropy_loss.rb,
lib/torch/nn/adaptive_avg_pool1d.rb,
lib/torch/nn/adaptive_avg_pool2d.rb,
lib/torch/nn/adaptive_avg_pool3d.rb,
lib/torch/nn/adaptive_avg_poolnd.rb,
lib/torch/nn/adaptive_max_pool1d.rb,
lib/torch/nn/adaptive_max_pool2d.rb,
lib/torch/nn/adaptive_max_pool3d.rb,
lib/torch/nn/adaptive_max_poolnd.rb,
lib/torch/nn/local_response_norm.rb,
lib/torch/nn/margin_ranking_loss.rb,
lib/torch/nn/multihead_attention.rb,
lib/torch/nn/transformer_decoder.rb,
lib/torch/nn/transformer_encoder.rb,
lib/torch/nn/triplet_margin_loss.rb,
lib/torch/utils/data/data_loader.rb,
lib/torch/nn/bce_with_logits_loss.rb,
lib/torch/nn/functional_attention.rb,
lib/torch/nn/hinge_embedding_loss.rb,
lib/torch/nn/cosine_embedding_loss.rb,
lib/torch/nn/feature_alpha_dropout.rb,
lib/torch/utils/data/tensor_dataset.rb,
lib/torch/nn/multi_label_margin_loss.rb,
lib/torch/optim/lr_scheduler/step_lr.rb,
lib/torch/utils/data/iterable_dataset.rb,
lib/torch/nn/transformer_decoder_layer.rb,
lib/torch/nn/transformer_encoder_layer.rb,
lib/torch/optim/lr_scheduler/lambda_lr.rb,
lib/torch/nn/multi_label_soft_margin_loss.rb,
lib/torch/optim/lr_scheduler/lr_scheduler.rb,
lib/torch/optim/lr_scheduler/multi_step_lr.rb,
lib/torch/optim/lr_scheduler/exponential_lr.rb,
lib/torch/optim/lr_scheduler/multiplicative_lr.rb,
lib/torch/utils/data/data_pipes/iter_data_pipe.rb,
lib/torch/optim/lr_scheduler/cosine_annealing_lr.rb,
lib/torch/utils/data/data_pipes/iter/file_lister.rb,
lib/torch/utils/data/data_pipes/iter/file_opener.rb,
lib/torch/utils/data/data_pipes/iter/stream_wrapper.rb,
lib/torch/utils/data/data_pipes/filter_iter_data_pipe.rb,
lib/torch/utils/data/data_pipes/iter/iterable_wrapper.rb
Overview
Defined Under Namespace
Modules: Autograd, Hub, Inspector, NN, Optim, Utils
Classes: ByteStorage, Error, NotImplementedYet, Tensor
Constant Summary
collapse
- DTYPE_TO_ENUM =
{
uint8: 0,
int8: 1,
short: 2,
int16: 2,
int: 3,
int32: 3,
long: 4,
int64: 4,
half: 5,
float16: 5,
float: 6,
float32: 6,
double: 7,
float64: 7,
complex_half: 8,
complex32: 8,
complex_float: 9,
complex64: 9,
complex_double: 10,
cdouble: 10,
complex128: 10,
bool: 11,
qint8: 12,
quint8: 13,
qint32: 14,
bfloat16: 15
}
- ENUM_TO_DTYPE =
DTYPE_TO_ENUM.map(&:reverse).to_h
- TENSOR_TYPE_CLASSES =
[]
- DTYPE_TO_CLASS =
{
float32: "FloatTensor",
float64: "DoubleTensor",
float16: "HalfTensor",
uint8: "ByteTensor",
int8: "CharTensor",
int16: "ShortTensor",
int32: "IntTensor",
int64: "LongTensor",
bool: "BoolTensor"
}
- VERSION =
"0.18.0"
Class Method Summary
collapse
Class Method Details
._dtype_to_numo ⇒ Object
private use method for cases when Numo not available or available after Torch loaded
351
352
353
354
355
356
357
358
359
360
361
362
363
|
# File 'lib/torch.rb', line 351
def _dtype_to_numo
raise Error, "Numo not found" unless defined?(Numo::NArray)
{
uint8: Numo::UInt8,
int8: Numo::Int8,
int16: Numo::Int16,
int32: Numo::Int32,
int64: Numo::Int64,
float32: Numo::SFloat,
float64: Numo::DFloat
}
end
|
._from_blob_ref(data, size, options) ⇒ Object
private TODO use keepAlive in Rice (currently segfaults)
339
340
341
342
343
344
345
346
|
# File 'lib/torch.rb', line 339
def _from_blob_ref(data, size, options)
tensor = _from_blob(data, size, options)
tensor.instance_variable_set("@_numo_data", data)
tensor
end
|
._make_tensor_class(dtype, cuda = false) ⇒ Object
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
|
# File 'lib/torch.rb', line 273
def self._make_tensor_class(dtype, cuda = false)
cls = Class.new
device = cuda ? "cuda" : "cpu"
cls.define_singleton_method("new") do |*args|
if args.size == 1 && args.first.is_a?(Tensor)
args.first.send(dtype).to(device)
elsif args.size == 1 && args.first.is_a?(ByteStorage) && dtype == :uint8
bytes = args.first.bytes
Torch._from_blob_ref(bytes, [bytes.bytesize], TensorOptions.new.dtype(DTYPE_TO_ENUM[dtype]))
elsif args.size == 1 && args.first.is_a?(Array)
Torch.tensor(args.first, dtype: dtype, device: device)
elsif args.size == 0
Torch.empty(0, dtype: dtype, device: device)
else
Torch.empty(*args, dtype: dtype, device: device)
end
end
TENSOR_TYPE_CLASSES << cls
cls
end
|
.device(str) ⇒ Object
384
385
386
|
# File 'lib/torch.rb', line 384
def device(str)
Device.new(str)
end
|
.enable_grad(&block) ⇒ Object
369
370
371
|
# File 'lib/torch.rb', line 369
def enable_grad(&block)
grad_enabled(true, &block)
end
|
.from_numo(ndarray) ⇒ Object
329
330
331
332
333
334
335
|
# File 'lib/torch.rb', line 329
def from_numo(ndarray)
dtype = _dtype_to_numo.find { |k, v| ndarray.is_a?(v) }
raise Error, "Cannot convert #{ndarray.class.name} to tensor" unless dtype
options = tensor_options(device: "cpu", dtype: dtype[0])
_from_blob_ref(ndarray.to_string, ndarray.shape, options)
end
|
.grad_enabled(value) ⇒ Object
Also known as:
set_grad_enabled
373
374
375
376
377
378
379
380
381
|
# File 'lib/torch.rb', line 373
def grad_enabled(value)
previous_value = grad_enabled?
begin
_set_grad_enabled(value)
yield
ensure
_set_grad_enabled(previous_value)
end
end
|
.load(filename) ⇒ Object
392
393
394
395
396
397
|
# File 'lib/torch.rb', line 392
def load(filename)
File.open(filename, "rb") { |f| f.read(1) }
to_ruby(_load(filename))
end
|
.no_grad(&block) ⇒ Object
365
366
367
|
# File 'lib/torch.rb', line 365
def no_grad(&block)
grad_enabled(false, &block)
end
|
.save(obj, f) ⇒ Object
388
389
390
|
# File 'lib/torch.rb', line 388
def save(obj, f)
File.binwrite(f, _save(to_ivalue(obj)))
end
|
.tensor(data, **options) ⇒ Object
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
|
# File 'lib/torch.rb', line 399
def tensor(data, **options)
if options[:dtype].nil? && defined?(Numo::NArray) && data.is_a?(Numo::NArray)
numo_to_dtype = _dtype_to_numo.map(&:reverse).to_h
options[:dtype] = numo_to_dtype[data.class]
end
size = []
if data.respond_to?(:to_a)
data = data.to_a
d = data
while d.is_a?(Array)
size << d.size
d = d.first
end
data = data.flatten
else
data = [data].compact
end
if options[:dtype].nil?
if data.all? { |v| v.is_a?(Integer) }
options[:dtype] = :int64
elsif data.all? { |v| v == true || v == false }
options[:dtype] = :bool
elsif data.any? { |v| v.is_a?(Complex) }
options[:dtype] = :complex64
end
end
raise Error, "Inconsistent dimensions" if data.size != size.inject(1, :*)
data = data.map { |v| v ? 1 : 0 } if options[:dtype] == :bool
_tensor(data, size, tensor_options(**options))
end
|
.tensor?(obj) ⇒ Boolean
325
326
327
|
# File 'lib/torch.rb', line 325
def tensor?(obj)
obj.is_a?(Tensor)
end
|