Module: Torch
- Defined in:
- lib/torch/inspector.rb,
lib/torch.rb,
lib/torch/hub.rb,
lib/torch/device.rb,
lib/torch/nn/elu.rb,
lib/torch/nn/gru.rb,
lib/torch/nn/rnn.rb,
lib/torch/tensor.rb,
lib/torch/nn/fold.rb,
lib/torch/nn/gelu.rb,
lib/torch/nn/init.rb,
lib/torch/nn/loss.rb,
lib/torch/nn/lstm.rb,
lib/torch/nn/relu.rb,
lib/torch/nn/tanh.rb,
lib/torch/version.rb,
lib/torch/nn/prelu.rb,
lib/torch/nn/utils.rb,
lib/torch/nn/conv1d.rb,
lib/torch/nn/conv2d.rb,
lib/torch/nn/conv3d.rb,
lib/torch/nn/convnd.rb,
lib/torch/nn/linear.rb,
lib/torch/nn/module.rb,
lib/torch/nn/unfold.rb,
lib/torch/optim/sgd.rb,
lib/torch/nn/dropout.rb,
lib/torch/nn/l1_loss.rb,
lib/torch/nn/sigmoid.rb,
lib/torch/nn/softmax.rb,
lib/torch/nn/softmin.rb,
lib/torch/optim/adam.rb,
lib/torch/optim/asgd.rb,
lib/torch/utils/data.rb,
lib/torch/nn/bce_loss.rb,
lib/torch/nn/bilinear.rb,
lib/torch/nn/ctc_loss.rb,
lib/torch/nn/identity.rb,
lib/torch/nn/mse_loss.rb,
lib/torch/nn/nll_loss.rb,
lib/torch/nn/rnn_base.rb,
lib/torch/nn/softplus.rb,
lib/torch/nn/softsign.rb,
lib/torch/nn/upsample.rb,
lib/torch/optim/adamw.rb,
lib/torch/optim/rprop.rb,
lib/torch/nn/dropout2d.rb,
lib/torch/nn/dropout3d.rb,
lib/torch/nn/dropoutnd.rb,
lib/torch/nn/embedding.rb,
lib/torch/nn/lp_pool1d.rb,
lib/torch/nn/lp_pool2d.rb,
lib/torch/nn/lp_poolnd.rb,
lib/torch/nn/parameter.rb,
lib/torch/nn/softmax2d.rb,
lib/torch/optim/adamax.rb,
lib/torch/nn/avg_pool1d.rb,
lib/torch/nn/avg_pool2d.rb,
lib/torch/nn/avg_pool3d.rb,
lib/torch/nn/avg_poolnd.rb,
lib/torch/nn/batch_norm.rb,
lib/torch/nn/functional.rb,
lib/torch/nn/group_norm.rb,
lib/torch/nn/hardshrink.rb,
lib/torch/nn/layer_norm.rb,
lib/torch/nn/leaky_relu.rb,
lib/torch/nn/max_pool1d.rb,
lib/torch/nn/max_pool2d.rb,
lib/torch/nn/max_pool3d.rb,
lib/torch/nn/max_poolnd.rb,
lib/torch/nn/sequential.rb,
lib/torch/nn/softshrink.rb,
lib/torch/nn/tanhshrink.rb,
lib/torch/nn/zero_pad2d.rb,
lib/torch/optim/adagrad.rb,
lib/torch/optim/rmsprop.rb,
lib/torch/nn/kl_div_loss.rb,
lib/torch/nn/log_sigmoid.rb,
lib/torch/nn/log_softmax.rb,
lib/torch/nn/module_list.rb,
lib/torch/nn/transformer.rb,
lib/torch/optim/adadelta.rb,
lib/torch/nn/batch_norm1d.rb,
lib/torch/nn/batch_norm2d.rb,
lib/torch/nn/batch_norm3d.rb,
lib/torch/nn/max_unpool1d.rb,
lib/torch/nn/max_unpool2d.rb,
lib/torch/nn/max_unpool3d.rb,
lib/torch/nn/max_unpoolnd.rb,
lib/torch/optim/optimizer.rb,
lib/torch/nn/alpha_dropout.rb,
lib/torch/nn/embedding_bag.rb,
lib/torch/nn/instance_norm.rb,
lib/torch/nn/weighted_loss.rb,
lib/torch/nn/constant_pad1d.rb,
lib/torch/nn/constant_pad2d.rb,
lib/torch/nn/constant_pad3d.rb,
lib/torch/nn/constant_padnd.rb,
lib/torch/nn/parameter_list.rb,
lib/torch/nn/smooth_l1_loss.rb,
lib/torch/utils/data/subset.rb,
lib/torch/nn/instance_norm1d.rb,
lib/torch/nn/instance_norm2d.rb,
lib/torch/nn/instance_norm3d.rb,
lib/torch/utils/data/dataset.rb,
lib/torch/nn/poisson_nll_loss.rb,
lib/torch/nn/reflection_pad1d.rb,
lib/torch/nn/reflection_pad2d.rb,
lib/torch/nn/reflection_padnd.rb,
lib/torch/nn/soft_margin_loss.rb,
lib/torch/nn/cosine_similarity.rb,
lib/torch/nn/multi_margin_loss.rb,
lib/torch/nn/pairwise_distance.rb,
lib/torch/nn/replication_pad1d.rb,
lib/torch/nn/replication_pad2d.rb,
lib/torch/nn/replication_pad3d.rb,
lib/torch/nn/replication_padnd.rb,
lib/torch/nn/cross_entropy_loss.rb,
lib/torch/nn/adaptive_avg_pool1d.rb,
lib/torch/nn/adaptive_avg_pool2d.rb,
lib/torch/nn/adaptive_avg_pool3d.rb,
lib/torch/nn/adaptive_avg_poolnd.rb,
lib/torch/nn/adaptive_max_pool1d.rb,
lib/torch/nn/adaptive_max_pool2d.rb,
lib/torch/nn/adaptive_max_pool3d.rb,
lib/torch/nn/adaptive_max_poolnd.rb,
lib/torch/nn/local_response_norm.rb,
lib/torch/nn/margin_ranking_loss.rb,
lib/torch/nn/multihead_attention.rb,
lib/torch/nn/transformer_decoder.rb,
lib/torch/nn/transformer_encoder.rb,
lib/torch/nn/triplet_margin_loss.rb,
lib/torch/utils/data/data_loader.rb,
lib/torch/nn/bce_with_logits_loss.rb,
lib/torch/nn/functional_attention.rb,
lib/torch/nn/hinge_embedding_loss.rb,
lib/torch/nn/cosine_embedding_loss.rb,
lib/torch/nn/feature_alpha_dropout.rb,
lib/torch/utils/data/tensor_dataset.rb,
lib/torch/nn/multi_label_margin_loss.rb,
lib/torch/optim/lr_scheduler/step_lr.rb,
lib/torch/utils/data/iterable_dataset.rb,
lib/torch/nn/transformer_decoder_layer.rb,
lib/torch/nn/transformer_encoder_layer.rb,
lib/torch/optim/lr_scheduler/lambda_lr.rb,
lib/torch/nn/multi_label_soft_margin_loss.rb,
lib/torch/optim/lr_scheduler/lr_scheduler.rb,
lib/torch/optim/lr_scheduler/multi_step_lr.rb,
lib/torch/optim/lr_scheduler/exponential_lr.rb,
lib/torch/optim/lr_scheduler/multiplicative_lr.rb,
lib/torch/utils/data/data_pipes/iter_data_pipe.rb,
lib/torch/optim/lr_scheduler/cosine_annealing_lr.rb,
lib/torch/utils/data/data_pipes/iter/file_lister.rb,
lib/torch/utils/data/data_pipes/iter/file_opener.rb,
lib/torch/utils/data/data_pipes/iter/stream_wrapper.rb,
lib/torch/utils/data/data_pipes/filter_iter_data_pipe.rb,
lib/torch/utils/data/data_pipes/iter/iterable_wrapper.rb
Overview
Defined Under Namespace
Modules: Autograd, Hub, Inspector, NN, Optim, Utils
Classes: ByteStorage, Device, Error, NotImplementedYet, Tensor
Constant Summary
collapse
- DTYPE_TO_ENUM =
{
uint8: 0,
int8: 1,
short: 2,
int16: 2,
int: 3,
int32: 3,
long: 4,
int64: 4,
half: 5,
float16: 5,
float: 6,
float32: 6,
double: 7,
float64: 7,
complex_half: 8,
complex32: 8,
complex_float: 9,
complex64: 9,
complex_double: 10,
cdouble: 10,
complex128: 10,
bool: 11,
qint8: 12,
quint8: 13,
qint32: 14,
bfloat16: 15
}
- ENUM_TO_DTYPE =
DTYPE_TO_ENUM.map(&:reverse).to_h
- TENSOR_TYPE_CLASSES =
[]
- DTYPE_TO_CLASS =
{
float32: "FloatTensor",
float64: "DoubleTensor",
float16: "HalfTensor",
uint8: "ByteTensor",
int8: "CharTensor",
int16: "ShortTensor",
int32: "IntTensor",
int64: "LongTensor",
bool: "BoolTensor"
}
- VERSION =
"0.19.1"
Class Method Summary
collapse
Class Method Details
._dtype_to_numo ⇒ Object
private use method for cases when Numo not available or available after Torch loaded
352
353
354
355
356
357
358
359
360
361
362
363
364
|
# File 'lib/torch.rb', line 352
def _dtype_to_numo
raise Error, "Numo not found" unless defined?(Numo::NArray)
{
uint8: Numo::UInt8,
int8: Numo::Int8,
int16: Numo::Int16,
int32: Numo::Int32,
int64: Numo::Int64,
float32: Numo::SFloat,
float64: Numo::DFloat
}
end
|
._from_blob_ref(data, size, options) ⇒ Object
private TODO use keepAlive in Rice (currently segfaults)
340
341
342
343
344
345
346
347
|
# File 'lib/torch.rb', line 340
def _from_blob_ref(data, size, options)
tensor = _from_blob(data, size, options)
tensor.instance_variable_set("@_numo_data", data)
tensor
end
|
._make_tensor_class(dtype, cuda = false) ⇒ Object
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
|
# File 'lib/torch.rb', line 274
def self._make_tensor_class(dtype, cuda = false)
cls = Class.new
device = cuda ? "cuda" : "cpu"
cls.define_singleton_method("new") do |*args|
if args.size == 1 && args.first.is_a?(Tensor)
args.first.send(dtype).to(device)
elsif args.size == 1 && args.first.is_a?(ByteStorage) && dtype == :uint8
bytes = args.first.bytes
Torch._from_blob_ref(bytes, [bytes.bytesize], TensorOptions.new.dtype(DTYPE_TO_ENUM[dtype]))
elsif args.size == 1 && args.first.is_a?(Array)
Torch.tensor(args.first, dtype: dtype, device: device)
elsif args.size == 0
Torch.empty(0, dtype: dtype, device: device)
else
Torch.empty(*args, dtype: dtype, device: device)
end
end
TENSOR_TYPE_CLASSES << cls
cls
end
|
.device(str) ⇒ Object
385
386
387
388
389
390
391
|
# File 'lib/torch.rb', line 385
def device(str)
if str.is_a?(Device)
str
else
Device.new(str)
end
end
|
.enable_grad(&block) ⇒ Object
370
371
372
|
# File 'lib/torch.rb', line 370
def enable_grad(&block)
grad_enabled(true, &block)
end
|
.from_numo(ndarray) ⇒ Object
330
331
332
333
334
335
336
|
# File 'lib/torch.rb', line 330
def from_numo(ndarray)
dtype = _dtype_to_numo.find { |k, v| ndarray.is_a?(v) }
raise Error, "Cannot convert #{ndarray.class.name} to tensor" unless dtype
options = tensor_options(device: "cpu", dtype: dtype[0])
_from_blob_ref(ndarray.to_string, ndarray.shape, options)
end
|
.grad_enabled(value) ⇒ Object
Also known as:
set_grad_enabled
374
375
376
377
378
379
380
381
382
|
# File 'lib/torch.rb', line 374
def grad_enabled(value)
previous_value = grad_enabled?
begin
_set_grad_enabled(value)
yield
ensure
_set_grad_enabled(previous_value)
end
end
|
.load(filename) ⇒ Object
397
398
399
400
401
402
|
# File 'lib/torch.rb', line 397
def load(filename)
File.open(filename, "rb") { |f| f.read(1) }
to_ruby(_load(filename))
end
|
.no_grad(&block) ⇒ Object
366
367
368
|
# File 'lib/torch.rb', line 366
def no_grad(&block)
grad_enabled(false, &block)
end
|
.save(obj, f) ⇒ Object
393
394
395
|
# File 'lib/torch.rb', line 393
def save(obj, f)
File.binwrite(f, _save(to_ivalue(obj)))
end
|
.tensor(data, **options) ⇒ Object
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
|
# File 'lib/torch.rb', line 404
def tensor(data, **options)
if options[:dtype].nil? && defined?(Numo::NArray) && data.is_a?(Numo::NArray)
numo_to_dtype = _dtype_to_numo.map(&:reverse).to_h
options[:dtype] = numo_to_dtype[data.class]
end
size = []
if data.respond_to?(:to_a)
data = data.to_a
d = data
while d.is_a?(Array)
size << d.size
d = d.first
end
data = data.flatten
else
data = [data].compact
end
if options[:dtype].nil?
if data.all? { |v| v.is_a?(Integer) }
options[:dtype] = :int64
elsif data.all? { |v| v == true || v == false }
options[:dtype] = :bool
elsif data.any? { |v| v.is_a?(Complex) }
options[:dtype] = :complex64
end
end
raise Error, "Inconsistent dimensions" if data.size != size.inject(1, :*)
data = data.map { |v| v ? 1 : 0 } if options[:dtype] == :bool
_tensor(data, size, tensor_options(**options))
end
|
.tensor?(obj) ⇒ Boolean
326
327
328
|
# File 'lib/torch.rb', line 326
def tensor?(obj)
obj.is_a?(Tensor)
end
|