Class: Torch::NN::BatchNorm
Direct Known Subclasses
Instance Method Summary collapse
- #extra_inspect ⇒ Object
- #forward(input) ⇒ Object
-
#initialize(num_features, eps: 1e-5, momentum: 0.1, affine: true, track_running_stats: true) ⇒ BatchNorm
constructor
A new instance of BatchNorm.
- #reset_parameters ⇒ Object
- #reset_running_stats ⇒ Object
Methods inherited from Module
#_apply, #add_module, #apply, #buffers, #call, #children, #cpu, #cuda, #double, #eval, #float, #half, #inspect, #load_state_dict, #method_missing, #modules, #named_buffers, #named_children, #named_modules, #named_parameters, #parameters, #register_buffer, #register_parameter, #requires_grad!, #respond_to?, #share_memory, #state_dict, #to, #train, #type, #zero_grad
Methods included from Utils
#_ntuple, #_pair, #_quadrupal, #_single, #_triple
Constructor Details
#initialize(num_features, eps: 1e-5, momentum: 0.1, affine: true, track_running_stats: true) ⇒ BatchNorm
Returns a new instance of BatchNorm.
4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 |
# File 'lib/torch/nn/batch_norm.rb', line 4 def initialize(num_features, eps: 1e-5, momentum: 0.1, affine: true, track_running_stats: true) super() @num_features = num_features @eps = eps @momentum = momentum @affine = affine @track_running_stats = track_running_stats if @affine @weight = Parameter.new(Torch::Tensor.new(num_features)) @bias = Parameter.new(Torch::Tensor.new(num_features)) else register_parameter("weight", nil) register_parameter("bias", nil) end if track_running_stats register_buffer("running_mean", Torch.zeros(num_features)) register_buffer("running_var", Torch.ones(num_features)) register_buffer("num_batches_tracked", Torch.tensor(0, dtype: :long)) else register_parameter("running_mean", nil) register_parameter("running_var", nil) register_parameter("num_batches_tracked", nil) end reset_parameters end |
Dynamic Method Handling
This class handles dynamic methods through the method_missing method in the class Torch::NN::Module
Instance Method Details
#extra_inspect ⇒ Object
74 75 76 77 |
# File 'lib/torch/nn/batch_norm.rb', line 74 def extra_inspect s = "%{num_features}, eps: %{eps}, momentum: %{momentum}, affine: %{affine}, track_running_stats: %{track_running_stats}" format(s, **dict) end |
#forward(input) ⇒ Object
46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 |
# File 'lib/torch/nn/batch_norm.rb', line 46 def forward(input) _check_input_dim(input) if @momentum.nil? exponential_average_factor = 0.0 else exponential_average_factor = @momentum end if @training and @track_running_stats if @num_batches_tracked.nil? @num_batches_tracked += 1 if @momentum.nil? exponential_average_factor = 1.0 / @num_batches_tracked.to_f else exponential_average_factor = @momentum end end end F.batch_norm( input, @running_mean, @running_var, weight: @weight, bias: @bias, training: @training || !@track_running_stats, momentum: exponential_average_factor, eps: @eps ) end |
#reset_parameters ⇒ Object
38 39 40 41 42 43 44 |
# File 'lib/torch/nn/batch_norm.rb', line 38 def reset_parameters reset_running_stats if @affine Init.ones!(@weight) Init.zeros!(@bias) end end |
#reset_running_stats ⇒ Object
30 31 32 33 34 35 36 |
# File 'lib/torch/nn/batch_norm.rb', line 30 def reset_running_stats if @track_running_stats @running_mean.zero! @running_var.fill!(1) @num_batches_tracked.zero! end end |