Class: Torch::NN::EmbeddingBag
- Defined in:
- lib/torch/nn/embedding_bag.rb
Instance Method Summary collapse
- #forward(input, offsets: nil, per_sample_weights: nil) ⇒ Object
-
#initialize(num_embeddings, embedding_dim, max_norm: nil, norm_type: 2.0, scale_grad_by_freq: false, mode: "mean", sparse: false, _weight: nil) ⇒ EmbeddingBag
constructor
A new instance of EmbeddingBag.
- #reset_parameters ⇒ Object
Methods inherited from Module
#_apply, #add_module, #apply, #buffers, #call, #children, #cpu, #cuda, #double, #eval, #float, #half, #inspect, #load_state_dict, #method_missing, #modules, #named_buffers, #named_children, #named_modules, #named_parameters, #parameters, #register_buffer, #register_parameter, #requires_grad!, #respond_to?, #share_memory, #state_dict, #to, #train, #type, #zero_grad
Methods included from Utils
#_ntuple, #_pair, #_quadrupal, #_single, #_triple
Constructor Details
#initialize(num_embeddings, embedding_dim, max_norm: nil, norm_type: 2.0, scale_grad_by_freq: false, mode: "mean", sparse: false, _weight: nil) ⇒ EmbeddingBag
Returns a new instance of EmbeddingBag.
5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 |
# File 'lib/torch/nn/embedding_bag.rb', line 5 def initialize(, , max_norm: nil, norm_type: 2.0, scale_grad_by_freq: false, mode: "mean", sparse: false, _weight: nil) super() @num_embeddings = @embedding_dim = @max_norm = max_norm @norm_type = norm_type @scale_grad_by_freq = scale_grad_by_freq if _weight.nil? @weight = Parameter.new(Tensor.new(, )) reset_parameters else raise ArgumentError, "Shape of weight does not match num_embeddings and embedding_dim" unless _weight.shape == [, ] @weight = Parameter.new(_weight) end @mode = mode @sparse = sparse end |
Dynamic Method Handling
This class handles dynamic methods through the method_missing method in the class Torch::NN::Module
Instance Method Details
#forward(input, offsets: nil, per_sample_weights: nil) ⇒ Object
29 30 31 |
# File 'lib/torch/nn/embedding_bag.rb', line 29 def forward(input, offsets: nil, per_sample_weights: nil) F.(input, @weight, offsets: offsets, max_norm: @max_norm, norm_type: @norm_type, scale_grad_by_freq: @scale_grad_by_freq, mode: @mode, sparse: @sparse, per_sample_weights: per_sample_weights) end |