Class: Torch::Optim::Adagrad
- Defined in:
- lib/torch/optim/adagrad.rb
Instance Attribute Summary
Attributes inherited from Optimizer
Instance Method Summary collapse
-
#initialize(params, lr: 1e-2, lr_decay: 0, weight_decay: 0, initial_accumulator_value: 0, eps: 1e-10) ⇒ Adagrad
constructor
A new instance of Adagrad.
- #share_memory ⇒ Object
- #step(closure = nil) ⇒ Object
Methods inherited from Optimizer
#add_param_group, #load_state_dict, #state_dict, #zero_grad
Constructor Details
#initialize(params, lr: 1e-2, lr_decay: 0, weight_decay: 0, initial_accumulator_value: 0, eps: 1e-10) ⇒ Adagrad
Returns a new instance of Adagrad.
5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 |
# File 'lib/torch/optim/adagrad.rb', line 5 def initialize(params, lr: 1e-2, lr_decay: 0, weight_decay: 0, initial_accumulator_value: 0, eps: 1e-10) raise ArgumentError, "Invalid learning rate: #{lr}" if lr < 0 raise ArgumentError, "Invalid lr_decay value: #{lr_decay}" if lr_decay < 0 raise ArgumentError, "Invalid initial_accumulator_value value: #{initial_accumulator_value}" if initial_accumulator_value < 0 raise ArgumentError, "Invalid weight_decay value: #{weight_decay}" if weight_decay < 0 raise ArgumentError, "Invalid epsilon value: #{eps}" if eps < 0 defaults = {lr: lr, lr_decay: lr_decay, eps: eps, weight_decay: weight_decay, initial_accumulator_value: initial_accumulator_value} super(params, defaults) @param_groups.each do |group| group[:params].each do |p| state = @state[p] state[:step] = 0 state[:sum] = Torch.full_like(p.data, initial_accumulator_value) end end end |
Instance Method Details
#share_memory ⇒ Object
24 25 26 27 28 29 30 31 |
# File 'lib/torch/optim/adagrad.rb', line 24 def share_memory @param_groups.each do |group| group[:params].each do |p| state = @state[p] state[:sum].share_memory! end end end |
#step(closure = nil) ⇒ Object
33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 |
# File 'lib/torch/optim/adagrad.rb', line 33 def step(closure = nil) loss = nil if closure loss = closure.call end @param_groups.each do |group| group[:params].each do |p| next unless p.grad grad = p.grad.data state = @state[p] state[:step] += 1 if group[:weight_decay] != 0 if p.grad.data.sparse? raise Error, "weight_decay option is not compatible with sparse gradients" end grad = grad.add(group[:weight_decay], p.data) end clr = group[:lr] / (1 + (state[:step] - 1) * group[:lr_decay]) if grad.sparse? raise NotImplementedYet else state[:sum].addcmul!(1, grad, grad) std = state[:sum].sqrt.add!(group[:eps]) p.data.addcdiv!(-clr, grad, std) end end end loss end |