Class: Torch::Optim::Rprop
- Defined in:
- lib/torch/optim/rprop.rb
Instance Attribute Summary
Attributes inherited from Optimizer
Instance Method Summary collapse
-
#initialize(params, lr: 1e-2, etas: [0.5, 1.2], step_sizes: [1e-6, 50]) ⇒ Rprop
constructor
A new instance of Rprop.
- #step(closure = nil) ⇒ Object
Methods inherited from Optimizer
#add_param_group, #load_state_dict, #state_dict, #zero_grad
Constructor Details
#initialize(params, lr: 1e-2, etas: [0.5, 1.2], step_sizes: [1e-6, 50]) ⇒ Rprop
Returns a new instance of Rprop.
5 6 7 8 9 10 11 |
# File 'lib/torch/optim/rprop.rb', line 5 def initialize(params, lr: 1e-2, etas: [0.5, 1.2], step_sizes: [1e-6, 50]) raise ArgumentError, "Invalid learning rate: #{lr}" if lr < 0 raise ArgumentError, "Invalid eta values: #{etas[0]}, #{etas[1]}" if etas[0] < 0 || etas[0] >= 1 || etas[1] < 1 defaults = {lr: lr, etas: etas, step_sizes: step_sizes} super(params, defaults) end |
Instance Method Details
#step(closure = nil) ⇒ Object
13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 |
# File 'lib/torch/optim/rprop.rb', line 13 def step(closure = nil) loss = nil if closure loss = closure.call end @param_groups.each do |group| group[:params].each do |p| next unless p.grad grad = p.grad.data if grad.sparse? raise Error, "Rprop does not support sparse gradients" end state = @state[p] # State initialization if state.size == 0 state[:step] = 0 state[:prev] = Torch.zeros_like(p.data) state[:step_size] = grad.new.resize_as!(grad).fill!(group[:lr]) end etaminus, etaplus = group[:etas] step_size_min, step_size_max = group[:step_sizes] step_size = state[:step_size] state[:step] += 1 sign = grad.mul(state[:prev]).sign sign[sign.gt(0)] = etaplus sign[sign.lt(0)] = etaminus sign[sign.eq(0)] = 1 # update stepsizes with step size updates step_size.mul!(sign).clamp!(step_size_min, step_size_max) # for dir<0, dfdx=0 # for dir>=0 dfdx=dfdx grad = grad.clone grad[sign.eq(etaminus)] = 0 # update parameters p.data.addcmul!(-1, grad.sign, step_size) state[:prev].copy!(grad) end end loss end |