Class: TorchText::NN::MultiheadAttentionContainer
- Inherits:
-
Torch::NN::Module
- Object
- Torch::NN::Module
- TorchText::NN::MultiheadAttentionContainer
- Defined in:
- lib/torchtext/nn/multihead_attention_container.rb
Instance Method Summary collapse
- #forward(query, key, value, attn_mask: nil, bias_k: nil, bias_v: nil) ⇒ Object
-
#initialize(nhead, in_proj_container, attention_layer, out_proj, batch_first: false) ⇒ MultiheadAttentionContainer
constructor
A new instance of MultiheadAttentionContainer.
Constructor Details
#initialize(nhead, in_proj_container, attention_layer, out_proj, batch_first: false) ⇒ MultiheadAttentionContainer
Returns a new instance of MultiheadAttentionContainer.
4 5 6 7 8 9 10 11 |
# File 'lib/torchtext/nn/multihead_attention_container.rb', line 4 def initialize(nhead, in_proj_container, attention_layer, out_proj, batch_first: false) super() @nhead = nhead @in_proj_container = in_proj_container @attention_layer = attention_layer @out_proj = out_proj @batch_first = batch_first end |
Instance Method Details
#forward(query, key, value, attn_mask: nil, bias_k: nil, bias_v: nil) ⇒ Object
13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 |
# File 'lib/torchtext/nn/multihead_attention_container.rb', line 13 def forward(query, key, value, attn_mask: nil, bias_k: nil, bias_v: nil) if @batch_first query, key, value = query.transpose(-3, -2), key.transpose(-3, -2), value.transpose(-3, -2) end tgt_len, src_len, bsz, = query.size(-3), key.size(-3), query.size(-2), query.size(-1) q, k, v = @in_proj_container.call(query, key, value) unless q.size(-1) % @nhead == 0 raise "query's embed_dim must be divisible by the number of heads" end head_dim = q.size(-1).div(@nhead) q = q.reshape(tgt_len, bsz * @nhead, head_dim) unless k.size(-1) % @nhead == 0 raise "key's embed_dim must be divisible by the number of heads" end head_dim = k.size(-1).div(@nhead) k = k.reshape(src_len, bsz * @nhead, head_dim) unless v.size(-1) % @nhead == 0 raise "value's embed_dim must be divisible by the number of heads" end head_dim = v.size(-1).div(@nhead) v = v.reshape(src_len, bsz * @nhead, head_dim) attn_output, attn_output_weights = @attention_layer.call(q, k, v, attn_mask: attn_mask, bias_k: bias_k, bias_v: bias_v) attn_output = attn_output.reshape(tgt_len, bsz, ) attn_output = @out_proj.call(attn_output) if @batch_first attn_output = attn_output.transpose(-3, -2) end [attn_output, attn_output_weights] end |