Class: TorchText::NN::ScaledDotProduct
- Inherits:
-
Torch::NN::Module
- Object
- Torch::NN::Module
- TorchText::NN::ScaledDotProduct
- Defined in:
- lib/torchtext/nn/scaled_dot_product.rb
Instance Method Summary collapse
- #forward(query, key, value, attn_mask: nil, bias_k: nil, bias_v: nil) ⇒ Object
-
#initialize(dropout: 0.0, batch_first: false) ⇒ ScaledDotProduct
constructor
A new instance of ScaledDotProduct.
Constructor Details
#initialize(dropout: 0.0, batch_first: false) ⇒ ScaledDotProduct
Returns a new instance of ScaledDotProduct.
4 5 6 7 8 |
# File 'lib/torchtext/nn/scaled_dot_product.rb', line 4 def initialize(dropout: 0.0, batch_first: false) super() @dropout = dropout @batch_first = batch_first end |
Instance Method Details
#forward(query, key, value, attn_mask: nil, bias_k: nil, bias_v: nil) ⇒ Object
10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 |
# File 'lib/torchtext/nn/scaled_dot_product.rb', line 10 def forward(query, key, value, attn_mask: nil, bias_k: nil, bias_v: nil) if @batch_first query, key, value = query.transpose(-3, -2), key.transpose(-3, -2), value.transpose(-3, -2) end if !bias_k.nil? && !bias_v.nil? unless key.size(-1) == bias_k.size(-1) && key.size(-2) == bias_k.size(-2) && bias_k.size(-3) == 1 raise "Shape of bias_k is not supported" end unless value.size(-1) == bias_v.size(-1) && value.size(-2) == bias_v.size(-2) && bias_v.size(-3) == 1 raise "Shape of bias_v is not supported" end key = Torch.cat([key, bias_k]) value = Torch.cat([value, bias_v]) if !attn_mask.nil? attn_mask = Torch::NN::Functional.pad(attn_mask, [0, 1]) end end tgt_len, head_dim = query.size(-3), query.size(-1) unless query.size(-1) == key.size(-1) && key.size(-1) == value.size(-1) raise "The feature dim of query, key, value must be equal." end unless key.size() == value.size() raise "Shape of key, value must match" end src_len = key.size(-3) batch_heads = [query.size(-2), key.size(-2)].max # Scale query query, key, value = query.transpose(-2, -3), key.transpose(-2, -3), value.transpose(-2, -3) query = query * (head_dim.to_f ** -0.5) if !attn_mask.nil? if attn_mask.dim() != 3 raise RuntimeError, "attn_mask must be a 3D tensor." end if (attn_mask.size(-1) != src_len) || (attn_mask.size(-2) != tgt_len) || (attn_mask.size(-3) != 1 && attn_mask.size(-3) != batch_heads) raise RuntimeError, "The size of the attn_mask is not correct." end if attn_mask.dtype != :bool raise RuntimeError, "Only bool tensor is supported for attn_mask" end end # Dot product of q, k attn_output_weights = Torch.matmul(query, key.transpose(-2, -1)) if !attn_mask.nil? # TODO confirm last argument attn_output_weights.masked_fill!(attn_mask, -1e8, nil) end attn_output_weights = Torch::NN::Functional.softmax(attn_output_weights, dim: -1) attn_output_weights = Torch::NN::Functional.dropout(attn_output_weights, p: @dropout, training: @training) attn_output = Torch.matmul(attn_output_weights, value) if @batch_first [attn_output, attn_output_weights] else [attn_output.transpose(-3, -2), attn_output_weights] end end |