Class: TorchVision::Transforms::Functional
- Inherits:
-
Object
- Object
- TorchVision::Transforms::Functional
- Defined in:
- lib/torchvision/transforms/functional.rb
Class Method Summary collapse
- .center_crop(img, output_size) ⇒ Object
- .crop(img, top, left, height, width) ⇒ Object
- .hflip(img) ⇒ Object
- .normalize(tensor, mean, std, inplace: false) ⇒ Object
- .resize(img, size) ⇒ Object
-
.resized_crop(img, top, left, height, width, size) ⇒ Object
TODO interpolation.
-
.to_tensor(pic) ⇒ Object
TODO improve.
- .vflip(img) ⇒ Object
Class Method Details
.center_crop(img, output_size) ⇒ Object
121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 |
# File 'lib/torchvision/transforms/functional.rb', line 121 def center_crop(img, output_size) if output_size.is_a?(Integer) output_size = [output_size.to_i, output_size.to_i] elsif output_size.is_a?(Array) && output_size.length == 1 output_size = [output_size[0], output_size[0]] end image_width, image_height = image_size(img) crop_height, crop_width = output_size if crop_width > image_width || crop_height > image_height padding_ltrb = [ crop_width > image_width ? (crop_width - image_width).div(2) : 0, crop_height > image_height ? (crop_height - image_height).div(2) : 0, crop_width > image_width ? (crop_width - image_width + 1).div(2) : 0, crop_height > image_height ? (crop_height - image_height + 1).div(2) : 0 ] # TODO img = pad(img, padding_ltrb, fill: 0) image_width, image_height = image_size(img) if crop_width == image_width && crop_height == image_height return img end end crop_top = ((image_height - crop_height) / 2.0).round crop_left = ((image_width - crop_width) / 2.0).round crop(img, crop_top, crop_left, crop_height, crop_width) end |
.crop(img, top, left, height, width) ⇒ Object
111 112 113 114 115 116 117 118 119 |
# File 'lib/torchvision/transforms/functional.rb', line 111 def crop(img, top, left, height, width) if img.is_a?(Torch::Tensor) assert_image_tensor(img) indexes = [true] * (img.dim - 2) img[*indexes, top...(top + height), left...(left + width)] else img.crop(left, top, width, height) end end |
.hflip(img) ⇒ Object
93 94 95 96 97 98 99 100 |
# File 'lib/torchvision/transforms/functional.rb', line 93 def hflip(img) if img.is_a?(Torch::Tensor) assert_image_tensor(img) img.flip(-1) else img.flip(:horizontal) end end |
.normalize(tensor, mean, std, inplace: false) ⇒ Object
5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 |
# File 'lib/torchvision/transforms/functional.rb', line 5 def normalize(tensor, mean, std, inplace: false) unless Torch.tensor?(tensor) raise ArgumentError, "tensor should be a torch tensor. Got #{tensor.class.name}" end if tensor.ndimension != 3 raise ArgumentError, "Expected tensor to be a tensor image of size (C, H, W). Got tensor.size() = #{tensor.size}" end tensor = tensor.clone unless inplace dtype = tensor.dtype # TODO Torch.as_tensor mean = Torch.tensor(mean, dtype: dtype, device: tensor.device) std = Torch.tensor(std, dtype: dtype, device: tensor.device) # TODO if std.to_a.any? { |v| v == 0 } raise ArgumentError, "std evaluated to zero after conversion to #{dtype}, leading to division by zero." end if mean.ndim == 1 mean = mean[0...mean.size(0), nil, nil] end if std.ndim == 1 std = std[0...std.size(0), nil, nil] end tensor.sub!(mean).div!(std) tensor end |
.resize(img, size) ⇒ Object
35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 |
# File 'lib/torchvision/transforms/functional.rb', line 35 def resize(img, size) raise "img should be Vips::Image. Got #{img.class.name}" unless img.is_a?(Vips::Image) if size.is_a?(Integer) w, h = img.size if (w <= h && w == size) || (h <= w && h == size) return img end if w < h ow = size oh = (size * h / w).to_i img.thumbnail_image(ow, height: oh) else oh = size ow = (size * w / h).to_i img.thumbnail_image(ow, height: oh) end else img.thumbnail_image(size[0], height: size[1], size: :force) end end |
.resized_crop(img, top, left, height, width, size) ⇒ Object
TODO interpolation
152 153 154 155 156 |
# File 'lib/torchvision/transforms/functional.rb', line 152 def resized_crop(img, top, left, height, width, size) img = crop(img, top, left, height, width) img = resize(img, size) #, interpolation) img end |
.to_tensor(pic) ⇒ Object
TODO improve
58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 |
# File 'lib/torchvision/transforms/functional.rb', line 58 def to_tensor(pic) if !pic.is_a?(Numo::NArray) && !pic.is_a?(Vips::Image) raise ArgumentError, "pic should be Vips::Image or Numo::NArray. Got #{pic.class.name}" end if pic.is_a?(Numo::NArray) && ![2, 3].include?(pic.ndim) raise ArgumentError, "pic should be 2/3 dimensional. Got #{pic.dim} dimensions." end if pic.is_a?(Numo::NArray) if pic.ndim == 2 pic = pic.reshape(*pic.shape, 1) end img = Torch.from_numo(pic.transpose(2, 0, 1)) if img.dtype == :uint8 return img.float.div(255) else return img end end case pic.format when :uchar img = Torch::ByteTensor.new(Torch::ByteStorage.from_buffer(pic.write_to_memory)) else raise Error, "Format not supported yet: #{pic.format}" end img = img.view(pic.height, pic.width, pic.bands) # put it from HWC to CHW format img = img.permute([2, 0, 1]).contiguous img.float.div(255) end |
.vflip(img) ⇒ Object
102 103 104 105 106 107 108 109 |
# File 'lib/torchvision/transforms/functional.rb', line 102 def vflip(img) if img.is_a?(Torch::Tensor) assert_image_tensor(img) img.flip(-2) else img.flip(:vertical) end end |