Class: TorchVision::Models::ResNet
- Inherits:
-
Torch::NN::Module
- Object
- Torch::NN::Module
- TorchVision::Models::ResNet
- Defined in:
- lib/torchvision/models/resnet.rb
Constant Summary collapse
- MODEL_URLS =
{ "resnet18" => "https://download.pytorch.org/models/resnet18-f37072fd.pth", "resnet34" => "https://download.pytorch.org/models/resnet34-b627a593.pth", "resnet50" => "https://download.pytorch.org/models/resnet50-0676ba61.pth", "resnet101" => "https://download.pytorch.org/models/resnet101-63fe2227.pth", "resnet152" => "https://download.pytorch.org/models/resnet152-394f9c45.pth", "resnext50_32x4d" => "https://download.pytorch.org/models/resnext50_32x4d-7cdf4587.pth", "resnext101_32x8d" => "https://download.pytorch.org/models/resnext101_32x8d-8ba56ff5.pth", "wide_resnet50_2" => "https://download.pytorch.org/models/wide_resnet50_2-95faca4d.pth", "wide_resnet101_2" => "https://download.pytorch.org/models/wide_resnet101_2-32ee1156.pth" }
Class Method Summary collapse
Instance Method Summary collapse
- #_forward_impl(x) ⇒ Object
- #_make_layer(block, planes, blocks, stride: 1, dilate: false) ⇒ Object
- #forward(x) ⇒ Object
-
#initialize(block, layers, num_classes = 1000, zero_init_residual: false, groups: 1, width_per_group: 64, replace_stride_with_dilation: nil, norm_layer: nil) ⇒ ResNet
constructor
A new instance of ResNet.
Constructor Details
#initialize(block, layers, num_classes = 1000, zero_init_residual: false, groups: 1, width_per_group: 64, replace_stride_with_dilation: nil, norm_layer: nil) ⇒ ResNet
Returns a new instance of ResNet.
16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 |
# File 'lib/torchvision/models/resnet.rb', line 16 def initialize(block, layers, num_classes = 1000, zero_init_residual: false, groups: 1, width_per_group: 64, replace_stride_with_dilation: nil, norm_layer: nil) super() norm_layer ||= Torch::NN::BatchNorm2d @norm_layer = norm_layer @inplanes = 64 @dilation = 1 if replace_stride_with_dilation.nil? # each element in the tuple indicates if we should replace # the 2x2 stride with a dilated convolution instead replace_stride_with_dilation = [false, false, false] end if replace_stride_with_dilation.length != 3 raise ArgumentError, "replace_stride_with_dilation should be nil or a 3-element tuple, got #{replace_stride_with_dilation}" end @groups = groups @base_width = width_per_group @conv1 = Torch::NN::Conv2d.new(3, @inplanes, 7, stride: 2, padding: 3, bias: false) @bn1 = norm_layer.new(@inplanes) @relu = Torch::NN::ReLU.new(inplace: true) @maxpool = Torch::NN::MaxPool2d.new(3, stride: 2, padding: 1) @layer1 = _make_layer(block, 64, layers[0]) @layer2 = _make_layer(block, 128, layers[1], stride: 2, dilate: replace_stride_with_dilation[0]) @layer3 = _make_layer(block, 256, layers[2], stride: 2, dilate: replace_stride_with_dilation[1]) @layer4 = _make_layer(block, 512, layers[3], stride: 2, dilate: replace_stride_with_dilation[2]) @avgpool = Torch::NN::AdaptiveAvgPool2d.new([1, 1]) @fc = Torch::NN::Linear.new(512 * block.expansion, num_classes) modules.each do |m| case m when Torch::NN::Conv2d Torch::NN::Init.kaiming_normal!(m.weight, mode: "fan_out", nonlinearity: "relu") when Torch::NN::BatchNorm2d, Torch::NN::GroupNorm Torch::NN::Init.constant!(m.weight, 1) Torch::NN::Init.constant!(m.bias, 0) end end # Zero-initialize the last BN in each residual branch, # so that the residual branch starts with zeros, and each residual block behaves like an identity. # This improves the model by 0.2~0.3% according to https://arxiv.org/abs/1706.02677 if zero_init_residual modules.each do |m| case m when Bottleneck Torch::NN::Init.constant!(m.bn3.weight, 0) when BasicBlock Torch::NN::Init.constant!(m.bn2.weight, 0) end end end end |
Class Method Details
.make_model(arch, block, layers, pretrained: false, **kwargs) ⇒ Object
118 119 120 121 122 123 124 125 126 |
# File 'lib/torchvision/models/resnet.rb', line 118 def self.make_model(arch, block, layers, pretrained: false, **kwargs) model = ResNet.new(block, layers, **kwargs) if pretrained url = MODEL_URLS[arch] state_dict = Torch::Hub.load_state_dict_from_url(url) model.load_state_dict(state_dict) end model end |
Instance Method Details
#_forward_impl(x) ⇒ Object
96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 |
# File 'lib/torchvision/models/resnet.rb', line 96 def _forward_impl(x) x = @conv1.call(x) x = @bn1.call(x) x = @relu.call(x) x = @maxpool.call(x) x = @layer1.call(x) x = @layer2.call(x) x = @layer3.call(x) x = @layer4.call(x) x = @avgpool.call(x) x = Torch.flatten(x, 1) x = @fc.call(x) x end |
#_make_layer(block, planes, blocks, stride: 1, dilate: false) ⇒ Object
71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 |
# File 'lib/torchvision/models/resnet.rb', line 71 def _make_layer(block, planes, blocks, stride: 1, dilate: false) norm_layer = @norm_layer downsample = nil previous_dilation = @dilation if dilate @dilation *= stride stride = 1 end if stride != 1 || @inplanes != planes * block.expansion downsample = Torch::NN::Sequential.new( Torch::NN::Conv2d.new(@inplanes, planes * block.expansion, 1, stride: stride, bias: false), norm_layer.new(planes * block.expansion) ) end layers = [] layers << block.new(@inplanes, planes, stride: stride, downsample: downsample, groups: @groups, base_width: @base_width, dilation: previous_dilation, norm_layer: norm_layer) @inplanes = planes * block.expansion (blocks - 1).times do layers << block.new(@inplanes, planes, groups: @groups, base_width: @base_width, dilation: @dilation, norm_layer: norm_layer) end Torch::NN::Sequential.new(*layers) end |
#forward(x) ⇒ Object
114 115 116 |
# File 'lib/torchvision/models/resnet.rb', line 114 def forward(x) _forward_impl(x) end |