Class: Transformers::Bert::BertModel
- Inherits:
-
BertPreTrainedModel
- Object
- Torch::NN::Module
- PreTrainedModel
- BertPreTrainedModel
- Transformers::Bert::BertModel
- Defined in:
- lib/transformers/models/bert/modeling_bert.rb
Instance Attribute Summary
Attributes inherited from PreTrainedModel
Instance Method Summary collapse
- #_prune_heads(heads_to_prune) ⇒ Object
- #forward(input_ids: nil, attention_mask: nil, token_type_ids: nil, position_ids: nil, head_mask: nil, inputs_embeds: nil, encoder_hidden_states: nil, encoder_attention_mask: nil, past_key_values: nil, use_cache: nil, output_attentions: nil, output_hidden_states: nil, return_dict: nil) ⇒ Object
-
#initialize(config, add_pooling_layer: true) ⇒ BertModel
constructor
A new instance of BertModel.
Methods inherited from BertPreTrainedModel
Methods inherited from PreTrainedModel
#_backward_compatibility_gradient_checkpointing, #_init_weights, #_initialize_weights, #base_model, #can_generate, #dequantize, #dummy_inputs, #framework, from_pretrained, #get_input_embeddings, #get_output_embeddings, #init_weights, #post_init, #prune_heads, #set_input_embeddings, #tie_weights, #warn_if_padding_and_no_attention_mask
Methods included from ClassAttribute
Methods included from ModuleUtilsMixin
#device, #get_extended_attention_mask, #get_head_mask
Constructor Details
#initialize(config, add_pooling_layer: true) ⇒ BertModel
Returns a new instance of BertModel.
538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 |
# File 'lib/transformers/models/bert/modeling_bert.rb', line 538 def initialize(config, add_pooling_layer: true) super(config) @config = config @embeddings = BertEmbeddings.new(config) @encoder = BertEncoder.new(config) @pooler = add_pooling_layer ? BertPooler.new(config) : nil @attn_implementation = config._attn_implementation @position_embedding_type = config. # Initialize weights and apply final processing post_init end |
Instance Method Details
#_prune_heads(heads_to_prune) ⇒ Object
554 555 556 557 558 |
# File 'lib/transformers/models/bert/modeling_bert.rb', line 554 def _prune_heads(heads_to_prune) heads_to_prune.each do |layer, heads| @encoder.layer[layer].attention.prune_heads(heads) end end |
#forward(input_ids: nil, attention_mask: nil, token_type_ids: nil, position_ids: nil, head_mask: nil, inputs_embeds: nil, encoder_hidden_states: nil, encoder_attention_mask: nil, past_key_values: nil, use_cache: nil, output_attentions: nil, output_hidden_states: nil, return_dict: nil) ⇒ Object
560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 |
# File 'lib/transformers/models/bert/modeling_bert.rb', line 560 def forward( input_ids: nil, attention_mask: nil, token_type_ids: nil, position_ids: nil, head_mask: nil, inputs_embeds: nil, encoder_hidden_states: nil, encoder_attention_mask: nil, past_key_values: nil, use_cache: nil, output_attentions: nil, output_hidden_states: nil, return_dict: nil ) output_attentions = !output_attentions.nil? ? output_attentions : @config.output_attentions output_hidden_states = ( !output_hidden_states.nil? ? output_hidden_states : @config.output_hidden_states ) return_dict = !return_dict.nil? ? return_dict : @config.use_return_dict if @config.is_decoder use_cache = !use_cache.nil? ? use_cache : @config.use_cache else use_cache = false end if !input_ids.nil? && !.nil? raise ArgumentError, "You cannot specify both input_ids and inputs_embeds at the same time" elsif !input_ids.nil? # self.warn_if_padding_and_no_attention_mask(input_ids, attention_mask) input_shape = input_ids.size elsif !.nil? input_shape = .size[...-1] else raise ArgumentError, "You have to specify either input_ids or inputs_embeds" end batch_size, seq_length = input_shape device = !input_ids.nil? ? input_ids.device : .device # past_key_values_length past_key_values_length = !past_key_values.nil? ? past_key_values[0][0].shape[2] : 0 if token_type_ids.nil? if @embeddings.token_type_ids buffered_token_type_ids = @embeddings.token_type_ids[0.., 0...seq_length] = buffered_token_type_ids.(batch_size, seq_length) token_type_ids = else token_type_ids = Torch.zeros(input_shape, dtype: Torch.long, device: device) end end = @embeddings.( input_ids: input_ids, position_ids: position_ids, token_type_ids: token_type_ids, inputs_embeds: , past_key_values_length: past_key_values_length ) if attention_mask.nil? attention_mask = Torch.ones([batch_size, seq_length + past_key_values_length], device: device) end use_sdpa_attention_masks = ( @attn_implementation == "sdpa" && @position_embedding_type == "absolute" && head_mask.nil? && !output_attentions ) # Expand the attention mask if use_sdpa_attention_masks raise Todo else # We can provide a self-attention mask of dimensions [batch_size, from_seq_length, to_seq_length] # ourselves in which case we just need to make it broadcastable to all heads. extended_attention_mask = get_extended_attention_mask(attention_mask, input_shape) end # If a 2D or 3D attention mask is provided for the cross-attention # we need to make broadcastable to [batch_size, num_heads, seq_length, seq_length] if @config.is_decoder && !encoder_hidden_states.nil? encoder_batch_size, encoder_sequence_length, _ = encoder_hidden_states.size encoder_hidden_shape = [encoder_batch_size, encoder_sequence_length] if encoder_attention_mask.nil? encoder_attention_mask = Torch.ones(encoder_hidden_shape, device: device) end if use_sdpa_attention_masks # Expand the attention mask for SDPA. # [bsz, seq_len] -> [bsz, 1, seq_len, seq_len] encoder_extended_attention_mask = _prepare_4d_attention_mask_for_sdpa( encoder_attention_mask, .dtype, tgt_len: seq_length ) else encoder_extended_attention_mask = invert_attention_mask(encoder_attention_mask) end else encoder_extended_attention_mask = nil end # Prepare head mask if needed # 1.0 in head_mask indicate we keep the head # attention_probs has shape bsz x n_heads x N x N # input head_mask has shape [num_heads] or [num_hidden_layers x num_heads] # and head_mask is converted to shape [num_hidden_layers x batch x num_heads x seq_length x seq_length] head_mask = get_head_mask(head_mask, @config.num_hidden_layers) encoder_outputs = @encoder.( , attention_mask: extended_attention_mask, head_mask: head_mask, encoder_hidden_states: encoder_hidden_states, encoder_attention_mask: encoder_extended_attention_mask, past_key_values: past_key_values, use_cache: use_cache, output_attentions: output_attentions, output_hidden_states: output_hidden_states, return_dict: return_dict ) sequence_output = encoder_outputs[0] pooled_output = !@pooler.nil? ? @pooler.(sequence_output) : nil if !return_dict raise Todo end BaseModelOutputWithPoolingAndCrossAttentions.new( last_hidden_state: sequence_output, pooler_output: pooled_output, past_key_values: encoder_outputs.past_key_values, hidden_states: encoder_outputs.hidden_states, attentions: encoder_outputs.attentions, cross_attentions: encoder_outputs.cross_attentions ) end |