Class: Transformers::ImageClassificationPipeline
Instance Method Summary
collapse
class_attribute
Methods inherited from Pipeline
#_ensure_tensor_on_device, #call, #check_model_type, #get_iterator, #torch_dtype
Constructor Details
Returns a new instance of ImageClassificationPipeline.
Instance Method Details
#_forward(model_inputs) ⇒ Object
47
48
49
50
|
# File 'lib/transformers/pipelines/image_classification.rb', line 47
def _forward(model_inputs)
model_outputs = @model.(**model_inputs)
model_outputs
end
|
#_sanitize_parameters(top_k: nil, function_to_apply: nil, timeout: nil) ⇒ Object
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
|
# File 'lib/transformers/pipelines/image_classification.rb', line 19
def _sanitize_parameters(top_k: nil, function_to_apply: nil, timeout: nil)
preprocess_params = {}
if !timeout.nil?
preprocess_params[:timeout] = timeout
end
postprocess_params = {}
if !top_k.nil?
postprocess_params[:top_k] = top_k
end
if function_to_apply.is_a?(String)
function_to_apply = ClassificationFunction.new(function_to_apply.downcase).to_s
end
if !function_to_apply.nil?
postprocess_params[:function_to_apply] = function_to_apply
end
[preprocess_params, {}, postprocess_params]
end
|
#postprocess(model_outputs, function_to_apply: nil, top_k: 5) ⇒ Object
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
|
# File 'lib/transformers/pipelines/image_classification.rb', line 52
def postprocess(model_outputs, function_to_apply: nil, top_k: 5)
if function_to_apply.nil?
if @model.config.problem_type == "multi_label_classification" || @model.config.num_labels == 1
function_to_apply = ClassificationFunction::SIGMOID
elsif @model.config.problem_type == "single_label_classification" || @model.config.num_labels > 1
function_to_apply = ClassificationFunction::SOFTMAX
elsif @model.config.instance_variable_defined?(:@function_to_apply) && function_to_apply.nil?
function_to_apply = @model.config.function_to_apply
else
function_to_apply = ClassificationFunction::NONE
end
end
if top_k > @model.config.num_labels
top_k = @model.config.num_labels
end
outputs = model_outputs[:logits][0]
if @framework == "pt" && [Torch.bfloat16, Torch.float16].include?(outputs.dtype)
outputs = outputs.to(Torch.float32).numo
else
outputs = outputs.numo
end
if function_to_apply == ClassificationFunction::SIGMOID
scores = sigmoid(outputs)
elsif function_to_apply == ClassificationFunction::SOFTMAX
scores = softmax(outputs)
elsif function_to_apply == ClassificationFunction::NONE
scores = outputs
else
raise ArgumentError, "Unrecognized `function_to_apply` argument: #{function_to_apply}"
end
dict_scores =
scores.to_a.map.with_index do |score, i|
{label: @model.config.id2label[i], score: score}
end
dict_scores.sort_by! { |x| -x[:score] }
if !top_k.nil?
dict_scores = dict_scores[...top_k]
end
dict_scores
end
|
#preprocess(image, timeout: nil) ⇒ Object
37
38
39
40
41
42
43
44
45
|
# File 'lib/transformers/pipelines/image_classification.rb', line 37
def preprocess(image, timeout: nil)
image = ImageUtils.load_image(image, timeout: timeout)
model_inputs = @image_processor.(image, return_tensors: @framework)
if @framework == "pt"
end
model_inputs
end
|