Module: Transformers::ImageTransforms
- Defined in:
- lib/transformers/image_transforms.rb
Class Method Summary collapse
- ._rescale_for_pil_conversion(image) ⇒ Object
- .normalize(image, mean, std, data_format: nil, input_data_format: nil) ⇒ Object
- .rescale(image, scale, data_format: nil, dtype: Numo::SFloat, input_data_format: nil) ⇒ Object
- .resize(image, size, resample: nil, reducing_gap: nil, data_format: nil, return_numpy: true, input_data_format: nil) ⇒ Object
- .to_channel_dimension_format(image, channel_dim, input_channel_dim: nil) ⇒ Object
- .to_pil_image(image, do_rescale: nil, input_data_format: nil) ⇒ Object
Class Method Details
._rescale_for_pil_conversion(image) ⇒ Object
199 200 201 202 203 204 205 206 |
# File 'lib/transformers/image_transforms.rb', line 199 def self._rescale_for_pil_conversion(image) if image.is_a?(Numo::UInt8) do_rescale = false else raise Todo end do_rescale end |
.normalize(image, mean, std, data_format: nil, input_data_format: nil) ⇒ Object
116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 |
# File 'lib/transformers/image_transforms.rb', line 116 def self.normalize( image, mean, std, data_format: nil, input_data_format: nil ) if !image.is_a?(Numo::NArray) raise ArgumentError, "image must be a numpy array" end if input_data_format.nil? input_data_format = infer_channel_dimension_format(image) end channel_axis = ImageUtils.get_channel_dimension_axis(image, input_data_format: input_data_format) num_channels = image.shape[channel_axis] # We cast to float32 to avoid errors that can occur when subtracting uint8 values. # We preserve the original dtype if it is a float type to prevent upcasting float16. if !image.is_a?(Numo::SFloat) && !image.is_a?(Numo::DFloat) image = image.cast_to(Numo::SFloat) end if mean.is_a?(Enumerable) if mean.length != num_channels raise ArgumentError, "mean must have #{num_channels} elements if it is an iterable, got #{mean.length}" end else mean = [mean] * num_channels end mean = Numo::DFloat.cast(mean) if std.is_a?(Enumerable) if std.length != num_channels raise ArgumentError, "std must have #{num_channels} elements if it is an iterable, got #{std.length}" end else std = [std] * num_channels end std = Numo::DFloat.cast(std) if input_data_format == ChannelDimension::LAST image = (image - mean) / std else image = ((image.transpose - mean) / std).transpose end image = !data_format.nil? ? to_channel_dimension_format(image, data_format, input_data_format) : image image end |
.rescale(image, scale, data_format: nil, dtype: Numo::SFloat, input_data_format: nil) ⇒ Object
46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 |
# File 'lib/transformers/image_transforms.rb', line 46 def self.rescale( image, scale, data_format: nil, dtype: Numo::SFloat, input_data_format: nil ) if !image.is_a?(Numo::NArray) raise ArgumentError, "Input image must be of type Numo::NArray, got #{image.class.name}" end rescaled_image = image * scale if !data_format.nil? rescaled_image = to_channel_dimension_format(rescaled_image, data_format, input_data_format) end rescaled_image = rescaled_image.cast_to(dtype) rescaled_image end |
.resize(image, size, resample: nil, reducing_gap: nil, data_format: nil, return_numpy: true, input_data_format: nil) ⇒ Object
67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 |
# File 'lib/transformers/image_transforms.rb', line 67 def self.resize( image, size, resample: nil, reducing_gap: nil, data_format: nil, return_numpy: true, input_data_format: nil ) resample = !resample.nil? ? resample : nil # PILImageResampling.BILINEAR if size.length != 2 raise ArgumentError, "size must have 2 elements" end # For all transformations, we want to keep the same data format as the input image unless otherwise specified. # The resized image from PIL will always have channels last, so find the input format first. if input_data_format.nil? input_data_format = ImageUtils.infer_channel_dimension_format(image) end data_format = data_format.nil? ? input_data_format : data_format # To maintain backwards compatibility with the resizing done in previous image feature extractors, we use # the pillow library to resize the image and then convert back to numpy do_rescale = false if !image.is_a?(Vips::Image) do_rescale = _rescale_for_pil_conversion(image) image = to_pil_image(image, do_rescale: do_rescale, input_data_format: input_data_format) end height, width = size # TODO support resample resized_image = image.thumbnail_image(width, height: height, size: :force) if return_numpy resized_image = ImageUtils.to_numo_array(resized_image) # If the input image channel dimension was of size 1, then it is dropped when converting to a PIL image # so we need to add it back if necessary. resized_image = resized_image.ndim == 2 ? resized_image.(-1) : resized_image # The image is always in channels last format after converting from a PIL image resized_image = to_channel_dimension_format( resized_image, data_format, input_channel_dim: ChannelDimension::LAST ) # If an image was rescaled to be in the range [0, 255] before converting to a PIL image, then we need to # rescale it back to the original range. resized_image = do_rescale ? rescale(resized_image, 1 / 255.0) : resized_image end resized_image end |
.to_channel_dimension_format(image, channel_dim, input_channel_dim: nil) ⇒ Object
17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 |
# File 'lib/transformers/image_transforms.rb', line 17 def self.to_channel_dimension_format( image, channel_dim, input_channel_dim: nil ) if !image.is_a?(Numo::NArray) raise ArgumentError, "Input image must be of type Numo::NArray, got #{image.class.name}" end if input_channel_dim.nil? input_channel_dim = infer_channel_dimension_format(image) end target_channel_dim = ChannelDimension.new(channel_dim).to_s if input_channel_dim == target_channel_dim return image end if target_channel_dim == ChannelDimension::FIRST image = image.transpose(2, 0, 1) elsif target_channel_dim == ChannelDimension::LAST image = image.transpose(1, 2, 0) else raise ArgumentError, "Unsupported channel dimension format: #{channel_dim}" end image end |
.to_pil_image(image, do_rescale: nil, input_data_format: nil) ⇒ Object
168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 |
# File 'lib/transformers/image_transforms.rb', line 168 def self.to_pil_image( image, do_rescale: nil, input_data_format: nil ) if image.is_a?(Vips::Image) return image end # Convert all tensors to numo arrays before converting to Vips image if !image.is_a?(Numo::NArray) raise ArgumentError, "Input image type not supported: #{image.class.name}" end # If the channel has been moved to first dim, we put it back at the end. image = to_channel_dimension_format(image, ChannelDimension::LAST, input_channel_dim: input_data_format) # If there is a single channel, we squeeze it, as otherwise PIL can't handle it. # image = image.shape[-1] == 1 ? image.squeeze(-1) : image # Rescale the image to be between 0 and 255 if needed. do_rescale = do_rescale.nil? ? _rescale_for_pil_conversion(image) : do_rescale if do_rescale image = rescale(image, 255) end image = image.cast_to(Numo::UInt8) Vips::Image.new_from_memory(image.to_binary, image.shape[1], image.shape[0], image.shape[2], :uchar) end |