Class: Transformers::QuestionAnsweringPipeline
- Inherits:
-
ChunkPipeline
- Object
- Pipeline
- ChunkPipeline
- Transformers::QuestionAnsweringPipeline
- Extended by:
- ClassAttribute
- Defined in:
- lib/transformers/pipelines/question_answering.rb
Class Method Summary collapse
Instance Method Summary collapse
- #_forward(inputs) ⇒ Object
- #_sanitize_parameters(padding: nil, topk: nil, top_k: nil, doc_stride: nil, max_answer_len: nil, max_seq_len: nil, max_question_len: nil, handle_impossible_answer: nil, align_to_words: nil, **kwargs) ⇒ Object
- #call(*args, **kwargs) ⇒ Object
- #decode_spans(start, end_, topk, max_answer_len, undesired_tokens) ⇒ Object
- #get_indices(enc, s, e, sequence_index, align_to_words) ⇒ Object
-
#initialize(model, tokenizer:, modelcard: nil, framework: nil, task: "", **kwargs) ⇒ QuestionAnsweringPipeline
constructor
A new instance of QuestionAnsweringPipeline.
- #isin(element, test_elements) ⇒ Object
- #postprocess(model_outputs, top_k: 1, handle_impossible_answer: false, max_answer_len: 15, align_to_words: true) ⇒ Object
- #preprocess(example, padding: "do_not_pad", doc_stride: nil, max_question_len: 64, max_seq_len: nil) ⇒ Object
- #select_starts_ends(start, end_, p_mask, attention_mask, min_null_score = 1000000, top_k = 1, handle_impossible_answer = false, max_answer_len = 15) ⇒ Object
- #unravel_index(indices, shape) ⇒ Object
Methods included from ClassAttribute
Methods inherited from ChunkPipeline
Methods inherited from Pipeline
#_ensure_tensor_on_device, #check_model_type, #get_iterator, #torch_dtype
Constructor Details
#initialize(model, tokenizer:, modelcard: nil, framework: nil, task: "", **kwargs) ⇒ QuestionAnsweringPipeline
Returns a new instance of QuestionAnsweringPipeline.
74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 |
# File 'lib/transformers/pipelines/question_answering.rb', line 74 def initialize( model, tokenizer:, modelcard: nil, framework: nil, task: "", **kwargs ) super( model, tokenizer: tokenizer, modelcard: modelcard, framework: framework, task: task, **kwargs ) @args_parser = QuestionAnsweringArgumentHandler.new check_model_type(MODEL_FOR_QUESTION_ANSWERING_MAPPING_NAMES) end |
Class Method Details
.create_sample(question:, context:) ⇒ Object
95 96 97 98 99 100 101 102 103 |
# File 'lib/transformers/pipelines/question_answering.rb', line 95 def self.create_sample( question:, context: ) if question.is_a?(Array) question.zip(context).map { |q, c| SquadExample.new(nil, q, c, nil, nil, nil) } else SquadExample.new(nil, question, context, nil, nil, nil) end end |
Instance Method Details
#_forward(inputs) ⇒ Object
297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 |
# File 'lib/transformers/pipelines/question_answering.rb', line 297 def _forward(inputs) example = inputs[:example] model_inputs = @tokenizer.model_input_names.to_h { |k| [k.to_sym, inputs[k.to_sym]] } # `XXXForSequenceClassification` models should not use `use_cache=True` even if it's supported # model_forward = @model.forward if self.framework == "pt" else self.model.call # if "use_cache" in inspect.signature(model_forward).parameters.keys(): # model_inputs[:use_cache] = false # end output = @model.(**model_inputs) if output.is_a?(Hash) {start: output[:start_logits], end: output[:end_logits], example: example}.merge(inputs) else start, end_ = output[...2] {start: start, end: end_, example: example}.merge(inputs) end end |
#_sanitize_parameters(padding: nil, topk: nil, top_k: nil, doc_stride: nil, max_answer_len: nil, max_seq_len: nil, max_question_len: nil, handle_impossible_answer: nil, align_to_words: nil, **kwargs) ⇒ Object
105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 |
# File 'lib/transformers/pipelines/question_answering.rb', line 105 def _sanitize_parameters( padding: nil, topk: nil, top_k: nil, doc_stride: nil, max_answer_len: nil, max_seq_len: nil, max_question_len: nil, handle_impossible_answer: nil, align_to_words: nil, **kwargs ) # Set defaults values preprocess_params = {} if !padding.nil? preprocess_params[:padding] = padding end if !doc_stride.nil? preprocess_params[:doc_stride] = doc_stride end if !max_question_len.nil? preprocess_params[:max_question_len] = max_question_len end if !max_seq_len.nil? preprocess_params[:max_seq_len] = max_seq_len end postprocess_params = {} if !topk.nil? && top_k.nil? warn("topk parameter is deprecated, use top_k instead") top_k = topk end if !top_k.nil? if top_k < 1 raise ArgumentError, "top_k parameter should be >= 1 (got #{top_k})" end postprocess_params[:top_k] = top_k end if !max_answer_len.nil? if max_answer_len < 1 raise ArgumentError, "max_answer_len parameter should be >= 1 (got #{max_answer_len})" end end if !max_answer_len.nil? postprocess_params[:max_answer_len] = max_answer_len end if !handle_impossible_answer.nil? postprocess_params[:handle_impossible_answer] = handle_impossible_answer end if !align_to_words.nil? postprocess_params[:align_to_words] = align_to_words end [preprocess_params, {}, postprocess_params] end |
#call(*args, **kwargs) ⇒ Object
160 161 162 163 164 165 166 |
# File 'lib/transformers/pipelines/question_answering.rb', line 160 def call(*args, **kwargs) examples = @args_parser.(*args, **kwargs) if examples.is_a?(Array) && examples.length == 1 return super(examples[0], **kwargs) end super(examples, **kwargs) end |
#decode_spans(start, end_, topk, max_answer_len, undesired_tokens) ⇒ Object
411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 |
# File 'lib/transformers/pipelines/question_answering.rb', line 411 def decode_spans( start, end_, topk, max_answer_len, undesired_tokens ) # Ensure we have batch axis if start.ndim == 1 start = start[nil] end if end_.ndim == 1 end_ = end_[nil] end # Compute the score of each tuple(start, end) to be the real answer outer = start.(-1).dot(end_.(1)) # Remove candidate with end < start and end - start > max_answer_len candidates = outer.triu.tril(max_answer_len - 1) # Inspired by Chen & al. (https://github.com/facebookresearch/DrQA) scores_flat = candidates.flatten if topk == 1 idx_sort = [scores_flat.argmax] elsif scores_flat.length < topk raise Todo else raise Todo end starts, ends = unravel_index(idx_sort, candidates.shape)[1..] desired_spans = isin(starts, undesired_tokens.where) & isin(ends, undesired_tokens.where) starts = starts[desired_spans] ends = ends[desired_spans] scores = candidates[0, starts, ends] [starts, ends, scores] end |
#get_indices(enc, s, e, sequence_index, align_to_words) ⇒ Object
388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 |
# File 'lib/transformers/pipelines/question_answering.rb', line 388 def get_indices( enc, s, e, sequence_index, align_to_words ) if align_to_words begin start_word = enc.token_to_word(s) end_word = enc.token_to_word(e) start_index = enc.word_to_chars(start_word, sequence_index)[0] end_index = enc.word_to_chars(end_word, sequence_index)[1] rescue # TODO raise # Some tokenizers don't really handle words. Keep to offsets then. start_index = enc.offsets[s][0] end_index = enc.offsets[e][1] end else start_index = enc.offsets[s][0] end_index = enc.offsets[e][1] end [start_index, end_index] end |
#isin(element, test_elements) ⇒ Object
459 460 461 462 |
# File 'lib/transformers/pipelines/question_answering.rb', line 459 def isin(element, test_elements) test_elements = test_elements.to_a Numo::Bit.cast(element.to_a.map { |e| test_elements.include?(e) }) end |
#postprocess(model_outputs, top_k: 1, handle_impossible_answer: false, max_answer_len: 15, align_to_words: true) ⇒ Object
314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 |
# File 'lib/transformers/pipelines/question_answering.rb', line 314 def postprocess( model_outputs, top_k: 1, handle_impossible_answer: false, max_answer_len: 15, align_to_words: true ) min_null_score = 1000000 # large and positive answers = [] model_outputs.each do |output| start_ = output[:start] end_ = output[:end] example = output[:example] p_mask = output[:p_mask] attention_mask = ( !output[:attention_mask].nil? ? output[:attention_mask].numo : nil ) starts, ends, scores, min_null_score = select_starts_ends( start_, end_, p_mask, attention_mask, min_null_score, top_k, handle_impossible_answer, max_answer_len ) if !@tokenizer.is_fast raise Todo else # Convert the answer (tokens) back to the original text # Score: score from the model # Start: Index of the first character of the answer in the context string # End: Index of the character following the last character of the answer in the context string # Answer: Plain text of the answer question_first = @tokenizer.padding_side == "right" enc = output[:encoding] # Encoding was *not* padded, input_ids *might*. # It doesn't make a difference unless we're padding on # the left hand side, since now we have different offsets # everywhere. if @tokenizer.padding_side == "left" offset = output[:input_ids].eq(@tokenizer.pad_token_id).numo.sum else offset = 0 end # Sometimes the max probability token is in the middle of a word so: # - we start by finding the right word containing the token with `token_to_word` # - then we convert this word in a character span with `word_to_chars` sequence_index = question_first ? 1 : 0 starts.to_a.zip(ends.to_a, scores.to_a) do |s, e, score| s = s - offset e = e - offset start_index, end_index = get_indices(enc, s, e, sequence_index, align_to_words) answers << { score: score[0], start: start_index, end: end_index, answer: example.context_text[start_index...end_index] } end end end if handle_impossible_answer answers << {score: min_null_score, start: 0, end: 0, answer: ""} end answers = answers.sort_by { |x| -x[:score] }[...top_k] if answers.length == 1 return answers[0] end answers end |
#preprocess(example, padding: "do_not_pad", doc_stride: nil, max_question_len: 64, max_seq_len: nil) ⇒ Object
168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 |
# File 'lib/transformers/pipelines/question_answering.rb', line 168 def preprocess(example, padding: "do_not_pad", doc_stride: nil, max_question_len: 64, max_seq_len: nil) # XXX: This is specal, args_parser will not handle anything generator or dataset like # For those we expect user to send a simple valid example either directly as a SquadExample or simple dict. # So we still need a little sanitation here. if example.is_a?(Hash) example = SquadExample.new(nil, example[:question], example[:context], nil, nil, nil) end if max_seq_len.nil? max_seq_len = [@tokenizer.model_max_length, 384].min end if doc_stride.nil? doc_stride = [max_seq_len.div(2), 128].min end if doc_stride > max_seq_len raise ArgumentError, "`doc_stride` (#{doc_stride}) is larger than `max_seq_len` (#{max_seq_len})" end if !@tokenizer.is_fast features = squad_convert_examples_to_features( examples: [example], tokenizer: @tokenizer, max_seq_length: max_seq_len, doc_stride: doc_stride, max_query_length: max_question_len, padding_strategy: PaddingStrategy::MAX_LENGTH, is_training: false, tqdm_enabled: false ) else # Define the side we want to truncate / pad and the text/pair sorting question_first = @tokenizer.padding_side == "right" encoded_inputs = @tokenizer.( question_first ? example.question_text : example.context_text, text_pair: question_first ? example.context_text : example.question_text, padding: padding, truncation: question_first ? "only_second" : "only_first", max_length: max_seq_len, stride: doc_stride, return_token_type_ids: true, return_overflowing_tokens: true, return_offsets_mapping: true, return_special_tokens_mask: true\ ) # When the input is too long, it's converted in a batch of inputs with overflowing tokens # and a stride of overlap between the inputs. If a batch of inputs is given, a special output # "overflow_to_sample_mapping" indicate which member of the encoded batch belong to which original batch sample. # Here we tokenize examples one-by-one so we don't need to use "overflow_to_sample_mapping". # "num_span" is the number of output samples generated from the overflowing tokens. num_spans = encoded_inputs[:input_ids].length # p_mask: mask with 1 for token than cannot be in the answer (0 for token which can be in an answer) # We put 0 on the tokens from the context and 1 everywhere else (question and special tokens) p_mask = num_spans.times.map do |span_id| encoded_inputs.sequence_ids(span_id).map { |tok| tok != (question_first ? 1 : 0) } end features = [] num_spans.times do |span_idx| input_ids_span_idx = encoded_inputs[:input_ids][span_idx] attention_mask_span_idx = ( encoded_inputs.include?(:attention_mask) ? encoded_inputs[:attention_mask][span_idx] : nil ) token_type_ids_span_idx = ( encoded_inputs.include?(:token_type_ids) ? encoded_inputs[:token_type_ids][span_idx] : nil ) # keep the cls_token unmasked (some models use it to indicate unanswerable questions) if !@tokenizer.cls_token_id.nil? cls_indices = (Numo::NArray.cast(input_ids_span_idx).eq(@tokenizer.cls_token_id)).where cls_indices.each do |cls_index| p_mask[span_idx][cls_index] = false end end submask = p_mask[span_idx] features << SquadFeatures.new( input_ids: input_ids_span_idx, attention_mask: attention_mask_span_idx, token_type_ids: token_type_ids_span_idx, p_mask: submask, encoding: encoded_inputs[span_idx], # We don't use the rest of the values - and actually # for Fast tokenizer we could totally avoid using SquadFeatures and SquadExample cls_index: nil, token_to_orig_map: {}, example_index: 0, unique_id: 0, paragraph_len: 0, token_is_max_context: 0, tokens: [], start_position: 0, end_position: 0, is_impossible: false, qas_id: nil ) end end features.each_with_index do |feature, i| fw_args = {} others = {} model_input_names = @tokenizer.model_input_names + ["p_mask", "token_type_ids"] feature.instance_variables.each do |k| v = feature.instance_variable_get(k) k = k[1..] if model_input_names.include?(k) if @framework == "tf" raise Todo elsif @framework == "pt" tensor = Torch.tensor(v) if tensor.dtype == Torch.int32 tensor = tensor.long end fw_args[k.to_sym] = tensor.unsqueeze(0) end else others[k.to_sym] = v end end is_last = i == features.length - 1 yield({example: example, is_last: is_last}.merge(fw_args).merge(others)) end end |
#select_starts_ends(start, end_, p_mask, attention_mask, min_null_score = 1000000, top_k = 1, handle_impossible_answer = false, max_answer_len = 15) ⇒ Object
464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 |
# File 'lib/transformers/pipelines/question_answering.rb', line 464 def select_starts_ends( start, end_, p_mask, attention_mask, min_null_score = 1000000, top_k = 1, handle_impossible_answer = false, max_answer_len = 15 ) # Ensure padded tokens & question tokens cannot belong to the set of candidate answers. undesired_tokens = ~p_mask.numo if !attention_mask.nil? undesired_tokens = undesired_tokens & attention_mask end # Generate mask undesired_tokens_mask = undesired_tokens.eq(0) # Make sure non-context indexes in the tensor cannot contribute to the softmax start = start.numo end_ = end_.numo start[undesired_tokens_mask] = -10000.0 end_[undesired_tokens_mask] = -10000.0 # Normalize logits and spans to retrieve the answer start = Numo::NMath.exp(start - start.max(axis: -1, keepdims: true)) start = start / start.sum end_ = Numo::NMath.exp(end_ - end_.max(axis: -1, keepdims: true)) end_ = end_ / end_.sum if handle_impossible_answer min_null_score = [min_null_score, (start[0, 0] * end_[0, 0]).item].min end # Mask CLS start[0, 0] = end_[0, 0] = 0.0 starts, ends, scores = decode_spans(start, end_, top_k, max_answer_len, undesired_tokens) [starts, ends, scores, min_null_score] end |
#unravel_index(indices, shape) ⇒ Object
448 449 450 451 452 453 454 455 456 457 |
# File 'lib/transformers/pipelines/question_answering.rb', line 448 def unravel_index(indices, shape) indices = Numo::NArray.cast(indices) result = [] factor = 1 shape.size.times do |i| result.unshift(indices / factor % shape[-1 - i]) factor *= shape[-1 - i] end result end |