Class: Transformers::TokenClassificationPipeline
- Inherits:
-
ChunkPipeline
- Object
- Pipeline
- ChunkPipeline
- Transformers::TokenClassificationPipeline
- Extended by:
- ClassAttribute
- Defined in:
- lib/transformers/pipelines/token_classification.rb
Instance Method Summary collapse
- #_forward(model_inputs) ⇒ Object
- #_sanitize_parameters(ignore_labels: nil, grouped_entities: nil, ignore_subwords: nil, aggregation_strategy: nil, offset_mapping: nil, stride: nil) ⇒ Object
- #aggregate(pre_entities, aggregation_strategy) ⇒ Object
- #aggregate_word(entities, aggregation_strategy) ⇒ Object
- #aggregate_words(entities, aggregation_strategy) ⇒ Object
- #gather_pre_entities(sentence, input_ids, scores, offset_mapping, special_tokens_mask, aggregation_strategy) ⇒ Object
- #get_tag(entity_name) ⇒ Object
- #group_entities(entities) ⇒ Object
- #group_sub_entities(entities) ⇒ Object
-
#initialize(*args, args_parser: TokenClassificationArgumentHandler.new, **kwargs) ⇒ TokenClassificationPipeline
constructor
A new instance of TokenClassificationPipeline.
- #postprocess(all_outputs, aggregation_strategy: AggregationStrategy::NONE, ignore_labels: nil) ⇒ Object
- #preprocess(sentence, offset_mapping: nil, **preprocess_params) ⇒ Object
Methods included from ClassAttribute
Methods inherited from ChunkPipeline
Methods inherited from Pipeline
#_ensure_tensor_on_device, #call, #check_model_type, #get_iterator, #torch_dtype
Constructor Details
#initialize(*args, args_parser: TokenClassificationArgumentHandler.new, **kwargs) ⇒ TokenClassificationPipeline
Returns a new instance of TokenClassificationPipeline.
18 19 20 21 22 23 24 |
# File 'lib/transformers/pipelines/token_classification.rb', line 18 def initialize(*args, args_parser: TokenClassificationArgumentHandler.new, **kwargs) super(*args, **kwargs) check_model_type(MODEL_FOR_TOKEN_CLASSIFICATION_MAPPING_NAMES) @basic_tokenizer = Bert::BertTokenizer::BasicTokenizer.new(do_lower_case: false) @args_parser = args_parser end |
Instance Method Details
#_forward(model_inputs) ⇒ Object
137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 |
# File 'lib/transformers/pipelines/token_classification.rb', line 137 def _forward(model_inputs) # Forward special_tokens_mask = model_inputs.delete(:special_tokens_mask) offset_mapping = model_inputs.delete(:offset_mapping) sentence = model_inputs.delete(:sentence) is_last = model_inputs.delete(:is_last) if @framework == "tf" logits = @model.(**model_inputs)[0] else output = @model.(**model_inputs) logits = output.is_a?(Hash) ? output[:logits] : output[0] end { logits: logits, special_tokens_mask: special_tokens_mask, offset_mapping: offset_mapping, sentence: sentence, is_last: is_last, **model_inputs } end |
#_sanitize_parameters(ignore_labels: nil, grouped_entities: nil, ignore_subwords: nil, aggregation_strategy: nil, offset_mapping: nil, stride: nil) ⇒ Object
26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 |
# File 'lib/transformers/pipelines/token_classification.rb', line 26 def _sanitize_parameters( ignore_labels: nil, grouped_entities: nil, ignore_subwords: nil, aggregation_strategy: nil, offset_mapping: nil, stride: nil ) preprocess_params = {} if !offset_mapping.nil? preprocess_params[:offset_mapping] = offset_mapping end postprocess_params = {} if !grouped_entities.nil? || !ignore_subwords.nil? if grouped_entities && ignore_subwords aggregation_strategy = AggregationStrategy::FIRST elsif grouped_entities && !ignore_subwords aggregation_strategy = AggregationStrategy::SIMPLE else aggregation_strategy = AggregationStrategy::NONE end if !grouped_entities.nil? warn( "`grouped_entities` is deprecated and will be removed in version v5.0.0, defaulted to" + " `aggregation_strategy=\"#{aggregation_strategy}\"` instead." ) end if !ignore_subwords.nil? warn( "`ignore_subwords` is deprecated and will be removed in version v5.0.0, defaulted to" + " `aggregation_strategy=\"#{aggregation_strategy}\"` instead." ) end end if !aggregation_strategy.nil? if aggregation_strategy.is_a?(String) aggregation_strategy = AggregationStrategy.new(aggregation_strategy.downcase).to_s end if ( [AggregationStrategy::FIRST, AggregationStrategy::MAX, AggregationStrategy::AVERAGE].include?(aggregation_strategy) && !@tokenizer.is_fast ) raise ArgumentError, "Slow tokenizers cannot handle subwords. Please set the `aggregation_strategy` option" + ' to `"simple"` or use a fast tokenizer.' end postprocess_params[:aggregation_strategy] = aggregation_strategy end if !ignore_labels.nil? postprocess_params[:ignore_labels] = ignore_labels end if !stride.nil? if stride >= @tokenizer.model_max_length raise ArgumentError, "`stride` must be less than `tokenizer.model_max_length` (or even lower if the tokenizer adds special tokens)" end if aggregation_strategy == AggregationStrategy::NONE raise ArgumentError, "`stride` was provided to process all the text but `aggregation_strategy=" + "\"#{aggregation_strategy}\"`, please select another one instead." else if @tokenizer.is_fast tokenizer_params = { return_overflowing_tokens: true, padding: true, stride: stride } preprocess_params[:tokenizer_params] = tokenizer_params else raise ArgumentError, "`stride` was provided to process all the text but you're using a slow tokenizer." + " Please use a fast tokenizer." end end end [preprocess_params, {}, postprocess_params] end |
#aggregate(pre_entities, aggregation_strategy) ⇒ Object
256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 |
# File 'lib/transformers/pipelines/token_classification.rb', line 256 def aggregate(pre_entities, aggregation_strategy) if [AggregationStrategy::NONE, AggregationStrategy::SIMPLE].include?(aggregation_strategy) entities = [] pre_entities.each do |pre_entity| entity_idx = pre_entity[:scores].argmax score = pre_entity[:scores][entity_idx] entity = { entity: @model.config.id2label[entity_idx], score: score, index: pre_entity[:index], word: pre_entity[:word], start: pre_entity[:start], end: pre_entity[:end] } entities << entity end else entities = aggregate_words(pre_entities, aggregation_strategy) end if aggregation_strategy == AggregationStrategy::NONE return entities end group_entities(entities) end |
#aggregate_word(entities, aggregation_strategy) ⇒ Object
282 283 284 |
# File 'lib/transformers/pipelines/token_classification.rb', line 282 def aggregate_word(entities, aggregation_strategy) raise Todo end |
#aggregate_words(entities, aggregation_strategy) ⇒ Object
286 287 288 |
# File 'lib/transformers/pipelines/token_classification.rb', line 286 def aggregate_words(entities, aggregation_strategy) raise Todo end |
#gather_pre_entities(sentence, input_ids, scores, offset_mapping, special_tokens_mask, aggregation_strategy) ⇒ Object
200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 |
# File 'lib/transformers/pipelines/token_classification.rb', line 200 def gather_pre_entities( sentence, input_ids, scores, offset_mapping, special_tokens_mask, aggregation_strategy ) pre_entities = [] scores.each_over_axis(0).with_index do |token_scores, idx| # Filter special_tokens if special_tokens_mask[idx] != 0 next end word = @tokenizer.convert_ids_to_tokens(input_ids[idx].to_i) if !offset_mapping.nil? start_ind, end_ind = offset_mapping[idx].to_a if !start_ind.is_a?(Integer) if @framework == "pt" start_ind = start_ind.item end_ind = end_ind.item end end word_ref = sentence[start_ind...end_ind] if @tokenizer.instance_variable_get(:@tokenizer).respond_to?(:continuing_subword_prefix) # This is a BPE, word aware tokenizer, there is a correct way # to fuse tokens is_subword = word.length != word_ref.length else is_subword = start_ind > 0 && !sentence[(start_ind - 1)...(start_ind + 1)].include?(" ") end if input_ids[idx].to_i == @tokenizer.unk_token_id word = word_ref is_subword = false end else start_ind = nil end_ind = nil is_subword = nil end pre_entity = { word: word, scores: token_scores, start: start_ind, end: end_ind, index: idx, is_subword: is_subword } pre_entities << pre_entity end pre_entities end |
#get_tag(entity_name) ⇒ Object
306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 |
# File 'lib/transformers/pipelines/token_classification.rb', line 306 def get_tag(entity_name) if entity_name.start_with?("B-") bi = "B" tag = entity_name[2..] elsif entity_name.start_with?("I-") bi = "I" tag = entity_name[2..] else # It's not in B-, I- format # Default to I- for continuation. bi = "I" tag = entity_name end [bi, tag] end |
#group_entities(entities) ⇒ Object
322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 |
# File 'lib/transformers/pipelines/token_classification.rb', line 322 def group_entities(entities) entity_groups = [] entity_group_disagg = [] entities.each do |entity| if entity_group_disagg.empty? entity_group_disagg << entity next end # If the current entity is similar and adjacent to the previous entity, # append it to the disaggregated entity group # The split is meant to account for the "B" and "I" prefixes # Shouldn't merge if both entities are B-type bi, tag = get_tag(entity[:entity]) _last_bi, last_tag = get_tag(entity_group_disagg[-1][:entity]) if tag == last_tag && bi != "B" # Modify subword type to be previous_type entity_group_disagg << entity else # If the current entity is different from the previous entity # aggregate the disaggregated entity group entity_groups << group_sub_entities(entity_group_disagg) entity_group_disagg = [entity] end end if entity_group_disagg.any? # it's the last entity, add it to the entity groups entity_groups << group_sub_entities(entity_group_disagg) end entity_groups end |
#group_sub_entities(entities) ⇒ Object
290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 |
# File 'lib/transformers/pipelines/token_classification.rb', line 290 def group_sub_entities(entities) # Get the first entity in the entity group entity = entities[0][:entity].split("-", 2)[-1] scores = entities.map { |entity| entity[:score] } tokens = entities.map { |entity| entity[:word] } entity_group = { entity_group: entity, score: scores.sum / scores.count.to_f, word: @tokenizer.convert_tokens_to_string(tokens), start: entities[0][:start], end: entities[-1][:end] } entity_group end |
#postprocess(all_outputs, aggregation_strategy: AggregationStrategy::NONE, ignore_labels: nil) ⇒ Object
160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 |
# File 'lib/transformers/pipelines/token_classification.rb', line 160 def postprocess(all_outputs, aggregation_strategy: AggregationStrategy::NONE, ignore_labels: nil) if ignore_labels.nil? ignore_labels = ["O"] end all_entities = [] all_outputs.each do |model_outputs| logits = model_outputs[:logits][0].numo sentence = all_outputs[0][:sentence] input_ids = model_outputs[:input_ids][0] offset_mapping = ( !model_outputs[:offset_mapping].nil? ? model_outputs[:offset_mapping][0] : nil ) special_tokens_mask = model_outputs[:special_tokens_mask][0].numo maxes = logits.max(axis: -1).(-1) shifted_exp = Numo::NMath.exp(logits - maxes) scores = shifted_exp / shifted_exp.sum(axis: -1).(-1) if @framework == "tf" raise Todo end pre_entities = gather_pre_entities( sentence, input_ids, scores, offset_mapping, special_tokens_mask, aggregation_strategy ) grouped_entities = aggregate(pre_entities, aggregation_strategy) # Filter anything that is in self.ignore_labels entities = grouped_entities.select do |entity| !ignore_labels.include?(entity[:entity]) && !ignore_labels.include?(entity[:entity_group]) end all_entities.concat(entities) end num_chunks = all_outputs.length if num_chunks > 1 all_entities = aggregate_overlapping_entities(all_entities) end all_entities end |
#preprocess(sentence, offset_mapping: nil, **preprocess_params) ⇒ Object
107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 |
# File 'lib/transformers/pipelines/token_classification.rb', line 107 def preprocess(sentence, offset_mapping: nil, **preprocess_params) tokenizer_params = preprocess_params.delete(:tokenizer_params) { {} } truncation = @tokenizer.model_max_length && @tokenizer.model_max_length > 0 inputs = @tokenizer.( sentence, return_tensors: @framework, truncation: truncation, return_special_tokens_mask: true, return_offsets_mapping: @tokenizer.is_fast, **tokenizer_params ) inputs.delete(:overflow_to_sample_mapping) num_chunks = inputs[:input_ids].length num_chunks.times do |i| if @framework == "tf" raise Todo else model_inputs = inputs.to_h { |k, v| [k, v[i].unsqueeze(0)] } end if !@offset_mapping.nil? model_inputs[:offset_mapping] = offset_mapping end model_inputs[:sentence] = i == 0 ? sentence : nil model_inputs[:is_last] = (i == num_chunks - 1) yield model_inputs end end |