Class: Transformers::XlmRoberta::XLMRobertaEncoder
- Inherits:
-
Torch::NN::Module
- Object
- Torch::NN::Module
- Transformers::XlmRoberta::XLMRobertaEncoder
- Defined in:
- lib/transformers/models/xlm_roberta/modeling_xlm_roberta.rb
Instance Method Summary collapse
- #forward(hidden_states, attention_mask: nil, head_mask: nil, encoder_hidden_states: nil, encoder_attention_mask: nil, past_key_values: nil, use_cache: nil, output_attentions: false, output_hidden_states: false, return_dict: true) ⇒ Object
-
#initialize(config) ⇒ XLMRobertaEncoder
constructor
A new instance of XLMRobertaEncoder.
Constructor Details
#initialize(config) ⇒ XLMRobertaEncoder
Returns a new instance of XLMRobertaEncoder.
494 495 496 497 498 499 |
# File 'lib/transformers/models/xlm_roberta/modeling_xlm_roberta.rb', line 494 def initialize(config) super() @config = config @layer = Torch::NN::ModuleList.new(config.num_hidden_layers.times.map { |_| XLMRobertaLayer.new(config) }) @gradient_checkpointing = false end |
Instance Method Details
#forward(hidden_states, attention_mask: nil, head_mask: nil, encoder_hidden_states: nil, encoder_attention_mask: nil, past_key_values: nil, use_cache: nil, output_attentions: false, output_hidden_states: false, return_dict: true) ⇒ Object
501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 |
# File 'lib/transformers/models/xlm_roberta/modeling_xlm_roberta.rb', line 501 def forward( hidden_states, attention_mask: nil, head_mask: nil, encoder_hidden_states: nil, encoder_attention_mask: nil, past_key_values: nil, use_cache: nil, output_attentions: false, output_hidden_states: false, return_dict: true ) all_hidden_states = output_hidden_states ? [] : nil all_self_attentions = output_attentions ? [] : nil all_cross_attentions = output_attentions && @config.add_cross_attention ? [] : nil if @gradient_checkpointing && @training if use_cache Transformers.logger.warn("`use_cache: true` is incompatible with gradient checkpointing. Setting `use_cache: false`...") use_cache = false end end next_decoder_cache = use_cache ? [] : nil @layer.each_with_index do |layer_module, i| if output_hidden_states all_hidden_states = all_hidden_states + [hidden_states] end layer_head_mask = !head_mask.nil? ? head_mask[i] : nil past_key_value = !past_key_values.nil? ? past_key_values[i] : nil if @gradient_checkpointing && @training layer_outputs = _gradient_checkpointing_func(layer_module.__call__, hidden_states, attention_mask, layer_head_mask, encoder_hidden_states, encoder_attention_mask, past_key_value, output_attentions) else layer_outputs = layer_module.(hidden_states, attention_mask:, head_mask: layer_head_mask, encoder_hidden_states:, encoder_attention_mask:, past_key_value:, output_attentions:) end hidden_states = layer_outputs[0] if use_cache next_decoder_cache += [layer_outputs[-1]] end if output_attentions all_self_attentions = all_self_attentions + [layer_outputs[1]] if @config.add_cross_attention all_cross_attentions = all_cross_attentions + [layer_outputs[2]] end end end if output_hidden_states all_hidden_states = all_hidden_states + [hidden_states] end if !return_dict return Array([hidden_states, next_decoder_cache, all_hidden_states, all_self_attentions, all_cross_attentions].select { |v| !v.nil? }) end BaseModelOutputWithPastAndCrossAttentions.new(last_hidden_state: hidden_states, past_key_values: next_decoder_cache, hidden_states: all_hidden_states, attentions: all_self_attentions, cross_attentions: all_cross_attentions) end |