Class: Transformers::XlmRoberta::XLMRobertaSelfAttention
- Inherits:
-
Torch::NN::Module
- Object
- Torch::NN::Module
- Transformers::XlmRoberta::XLMRobertaSelfAttention
- Defined in:
- lib/transformers/models/xlm_roberta/modeling_xlm_roberta.rb
Direct Known Subclasses
Instance Method Summary collapse
- #forward(hidden_states, attention_mask: nil, head_mask: nil, encoder_hidden_states: nil, encoder_attention_mask: nil, past_key_value: nil, output_attentions: false) ⇒ Object
-
#initialize(config, position_embedding_type: nil) ⇒ XLMRobertaSelfAttention
constructor
A new instance of XLMRobertaSelfAttention.
- #transpose_for_scores(x) ⇒ Object
Constructor Details
#initialize(config, position_embedding_type: nil) ⇒ XLMRobertaSelfAttention
Returns a new instance of XLMRobertaSelfAttention.
101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 |
# File 'lib/transformers/models/xlm_roberta/modeling_xlm_roberta.rb', line 101 def initialize(config, position_embedding_type: nil) super() if config.hidden_size % config.num_attention_heads != 0 && !config.hasattr("embedding_size") raise ArgumentError, "The hidden size (#{config.hidden_size}) is not a multiple of the number of attention heads (#{config.num_attention_heads})" end @num_attention_heads = config.num_attention_heads @attention_head_size = (config.hidden_size / config.num_attention_heads).to_i @all_head_size = @num_attention_heads * @attention_head_size @query = Torch::NN::Linear.new(config.hidden_size, @all_head_size) @key = Torch::NN::Linear.new(config.hidden_size, @all_head_size) @value = Torch::NN::Linear.new(config.hidden_size, @all_head_size) @dropout = Torch::NN::Dropout.new(p: config.attention_probs_dropout_prob) @position_embedding_type = || config.getattr("position_embedding_type", "absolute") if @position_embedding_type == "relative_key" || @position_embedding_type == "relative_key_query" @max_position_embeddings = config. @distance_embedding = Torch::NN::Embedding.new((2 * config.) - 1, @attention_head_size) end @is_decoder = config.is_decoder end |
Instance Method Details
#forward(hidden_states, attention_mask: nil, head_mask: nil, encoder_hidden_states: nil, encoder_attention_mask: nil, past_key_value: nil, output_attentions: false) ⇒ Object
131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 |
# File 'lib/transformers/models/xlm_roberta/modeling_xlm_roberta.rb', line 131 def forward( hidden_states, attention_mask: nil, head_mask: nil, encoder_hidden_states: nil, encoder_attention_mask: nil, past_key_value: nil, output_attentions: false ) mixed_query_layer = @query.(hidden_states) # If this is instantiated as a cross-attention module, the keys # and values come from an encoder; the attention mask needs to be # such that the encoder's padding tokens are not attended to. is_cross_attention = !encoder_hidden_states.nil? if is_cross_attention && !past_key_value.nil? # reuse k,v, cross_attentions key_layer = past_key_value[0] value_layer = past_key_value[1] attention_mask = encoder_attention_mask elsif is_cross_attention key_layer = transpose_for_scores(@key.(encoder_hidden_states)) value_layer = transpose_for_scores(@value.(encoder_hidden_states)) attention_mask = encoder_attention_mask elsif !past_key_value.nil? key_layer = transpose_for_scores(@key.(hidden_states)) value_layer = transpose_for_scores(@value.(hidden_states)) key_layer = Torch.cat([past_key_value[0], key_layer], dim: 2) value_layer = Torch.cat([past_key_value[1], value_layer], dim: 2) else key_layer = transpose_for_scores(@key.(hidden_states)) value_layer = transpose_for_scores(@value.(hidden_states)) end query_layer = transpose_for_scores(mixed_query_layer) use_cache = !past_key_value.nil? if @is_decoder # if cross_attention save Tuple(torch.Tensor, torch.Tensor) of all cross attention key/value_states. # Further calls to cross_attention layer can then reuse all cross-attention # key/value_states (first "if" case) # if uni-directional self-attention (decoder) save Tuple(torch.Tensor, torch.Tensor) of # all previous decoder key/value_states. Further calls to uni-directional self-attention # can concat previous decoder key/value_states to current projected key/value_states (third "elif" case) # if encoder bi-directional self-attention `past_key_value` is always `None` past_key_value = [key_layer, value_layer] end # Take the dot product between "query" and "key" to get the raw attention scores. attention_scores = Torch.matmul(query_layer, key_layer.transpose(-1, -2)) if @position_embedding_type == "relative_key" || @position_embedding_type == "relative_key_query" query_length, key_length = [query_layer.shape[2], key_layer.shape[2]] if use_cache position_ids_l = Torch.tensor(key_length - 1, dtype: Torch.long, device: hidden_states.device).view(-1, 1) else position_ids_l = Torch.arange(query_length, dtype: Torch.long, device: hidden_states.device).view(-1, 1) end position_ids_r = Torch.arange(key_length, dtype: Torch.long, device: hidden_states.device).view(1, -1) distance = position_ids_l - position_ids_r = @distance_embedding.((distance + @max_position_embeddings) - 1) = .to(dtype: query_layer.dtype) if @position_embedding_type == "relative_key" relative_position_scores = Torch.einsum("bhld,lrd->bhlr", query_layer, ) attention_scores = attention_scores + relative_position_scores elsif @position_embedding_type == "relative_key_query" relative_position_scores_query = Torch.einsum("bhld,lrd->bhlr", query_layer, ) relative_position_scores_key = Torch.einsum("bhrd,lrd->bhlr", key_layer, ) attention_scores = attention_scores + relative_position_scores_query + relative_position_scores_key end end attention_scores = attention_scores / Math.sqrt(@attention_head_size) if !attention_mask.nil? # Apply the attention mask is (precomputed for all layers in XLMRobertaModel forward() function) attention_scores = attention_scores + attention_mask end # Normalize the attention scores to probabilities. attention_probs = Torch::NN::Functional.softmax(attention_scores, dim: -1) # This is actually dropping out entire tokens to attend to, which might # seem a bit unusual, but is taken from the original Transformer paper. attention_probs = @dropout.(attention_probs) # Mask heads if we want to if !head_mask.nil? attention_probs = attention_probs * head_mask end context_layer = Torch.matmul(attention_probs, value_layer) context_layer = context_layer.permute(0, 2, 1, 3).contiguous new_context_layer_shape = context_layer.size[...-2] + [@all_head_size] context_layer = context_layer.view(new_context_layer_shape) outputs = output_attentions ? [context_layer, attention_probs] : [context_layer] if @is_decoder outputs = outputs + [past_key_value] end outputs end |
#transpose_for_scores(x) ⇒ Object
125 126 127 128 129 |
# File 'lib/transformers/models/xlm_roberta/modeling_xlm_roberta.rb', line 125 def transpose_for_scores(x) new_x_shape = x.size[...-1] + [@num_attention_heads, @attention_head_size] x = x.view(new_x_shape) x.permute(0, 2, 1, 3) end |