Module: TruthTable::QM
- Defined in:
- lib/truthtable/qm.rb
Overview
Quine-McCluskey algorithm
Constant Summary collapse
- INTERN =
{ false => 0, true => 1, 0 => 0, 1 => 1, :x => -1, }
- EXTERN =
{ 0 => false, 1 => true, -1 => :x }
Class Method Summary collapse
- .combine(t1, t2) ⇒ Object
- .combine2(t1, t2) ⇒ Object
- .extern_term(t) ⇒ Object
- .find_prime_implicants(tbl) ⇒ Object
-
.has_intersection?(t1, t2) ⇒ Boolean
:stopdoc:.
- .implication?(t1, t2) ⇒ Boolean
- .intern_tbl(tbl) ⇒ Object
- .make_chart(prime_implicants, tbl) ⇒ Object
-
.qm(tbl) ⇒ Object
implements Quine-McCluskey algorithm.
- .search_minimal_combination(chart) ⇒ Object
Class Method Details
.combine(t1, t2) ⇒ Object
192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 |
# File 'lib/truthtable/qm.rb', line 192 def combine(t1, t2) num_diffs = 0 r = [t1,t2].transpose.map {|v1, v2| if v1 == v2 v1 elsif v1 == 0 && v2 == 1 num_diffs += 1 return nil if 1 < num_diffs -1 elsif v1 == 1 && v2 == 0 num_diffs += 1 return nil if 1 < num_diffs -1 else return nil end } if num_diffs == 1 r else nil end end |
.combine2(t1, t2) ⇒ Object
216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 |
# File 'lib/truthtable/qm.rb', line 216 def combine2(t1, t2) num_diffs = 0 r = [t1,t2].transpose.map {|v1, v2| if v1 == v2 v1 elsif v1 == 0 && v2 == 1 num_diffs += 1 return nil if 1 < num_diffs -1 elsif v1 == 1 && v2 == 0 num_diffs += 1 return nil if 1 < num_diffs -1 elsif v2 == -1 v1 else return nil end } if num_diffs == 1 r else nil end end |
.extern_term(t) ⇒ Object
188 189 190 |
# File 'lib/truthtable/qm.rb', line 188 def extern_term(t) t.map {|v| EXTERN[v] } end |
.find_prime_implicants(tbl) ⇒ Object
242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 |
# File 'lib/truthtable/qm.rb', line 242 def find_prime_implicants(tbl) num_inputs = nil implicants_sets = [] tbl.each {|inputs, output| num_inputs = inputs.length next if output == 0 num_dontcares = inputs.grep(-1).length num_ones = inputs.grep(1).length implicants_sets[num_dontcares] ||= [] implicants_sets[num_dontcares][num_ones] ||= {} implicants_sets[num_dontcares][num_ones][inputs] = true } combined = {} 0.upto(num_inputs-1) {|num_dontcares| #isets = implicants_sets[num_dontcares] isets = implicants_sets[num_dontcares].clone unless implicants_sets[num_dontcares].nil? next if !isets 0.upto(isets.length-2) {|num_ones| next if !isets[num_ones] || !isets[num_ones+1] isets[num_ones].each_key {|t1| isets[num_ones+1].each_key {|t2| if t = combine(t1, t2) combined[t1] = combined[t2] = true implicants_sets[num_dontcares+1] ||= [] implicants_sets[num_dontcares+1][num_ones] ||= {} implicants_sets[num_dontcares+1][num_ones][t] = true end } } } isets.each {|ts1| next if !ts1 ts1.each_key {|t1| (num_dontcares+1).upto(num_inputs-1) {|num_dontcares2| #isets2 = implicants_sets[num_dontcares2] isets2 = MessagePack.unpack(implicants_sets[num_dontcares2].to_msgpack) next if !isets2 isets2.each {|ts2| next if !ts2 ts2.each_key {|t2| if t = combine2(t1, t2) combined[t1] = true num_ones = t1.grep(1).length implicants_sets[num_dontcares+1] ||= [] implicants_sets[num_dontcares+1][num_ones] ||= {} implicants_sets[num_dontcares+1][num_ones][t] = true end } } } } } } prime_implicants = {} implicants_sets.each {|isets| next if !isets isets.each {|ts| next if !ts ts.each_key {|t| next if combined[t] prime_implicants[t] = true } } } prime_implicants end |
.has_intersection?(t1, t2) ⇒ Boolean
:stopdoc:
110 111 112 113 114 |
# File 'lib/truthtable/qm.rb', line 110 def has_intersection?(t1, t2) [t1,t2].transpose.all? {|v1, v2| v1 == -1 || v2 == -1 || v1 == v2 } end |
.implication?(t1, t2) ⇒ Boolean
116 117 118 119 120 |
# File 'lib/truthtable/qm.rb', line 116 def implication?(t1, t2) [t1,t2].transpose.all? {|v1, v2| v2 == -1 || v1 == v2 } end |
.intern_tbl(tbl) ⇒ Object
129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 |
# File 'lib/truthtable/qm.rb', line 129 def intern_tbl(tbl) result = {} num_inputs = nil tbl.each {|inputs, output| if !num_inputs num_inputs = inputs.length else if inputs.length != num_inputs raise ArgumentError, "different number of inputs" end end inputs2 = inputs.map {|v| if !INTERN.has_key?(v) raise ArgumentError, "unexpected input: #{v.inspect}" end INTERN[v] } if !INTERN.has_key?(output) raise ArgumentError, "unexpected output: #{output.inspect}" end result[inputs2] = INTERN[output] } result_keys = result.keys 0.upto(result_keys.length-2) {|i| ki = result_keys[i] next if !result[ki] (i+1).upto(result_keys.length-1) {|j| kj = result_keys[j] next if !result[kj] if has_intersection?(ki, kj) if result[ki] != result[kj] raise ArgumentError, "inconsistent table" end if implication?(ki, kj) result.delete ki elsif implication?(kj, ki) result.delete kj end end } } not_specified = [] 0.upto((1 << num_inputs)-1) {|n| inputs = (0...num_inputs).map {|i| n[i] } if result.all? {|inputs_pat, output| !has_intersection?(inputs, inputs_pat) } not_specified << inputs end } not_specified.each {|inputs| result[inputs] = -1 } result end |
.make_chart(prime_implicants, tbl) ⇒ Object
309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 |
# File 'lib/truthtable/qm.rb', line 309 def make_chart(prime_implicants, tbl) essential_prime_implicants = {} chart = [] tbl.each {|inputs, output| next if output != 1 pi_list = [] prime_implicants.each_key {|pi| if implication?(inputs, pi) pi_list << pi end } if pi_list.length == 1 essential_prime_implicants[pi_list[0]] = true else chart << pi_list end } chart.reject! {|pi_list| pi_list.any? {|pi| essential_prime_implicants[pi] } } return essential_prime_implicants, chart end |
.qm(tbl) ⇒ Object
implements Quine-McCluskey algorithm. It minimize the boolean function given by tbl.
For example, the 3-inputs majority function is given as follows.
tbl = {
# P Q R
[false, false, false] => false,
[false, false, true ] => false,
[false, true, false] => false,
[false, true, true ] => true,
[true, false, false] => false,
[true, false, true ] => true,
[true, true, false] => true,
[true, true, true ] => true,
}
TruthTable::QM.qm(tbl)
#=>
[[true, true, :x], [true, :x, true], [:x, true, true]] # P&Q | P&R | Q&R
# P Q P R Q R
For another example, the implication function is given as follows.
tbl = {
# P Q
[false, false] => true,
[false, true ] => true,
[true, false] => false,
[true, true ] => true,
}
TruthTable::QM.qm(tbl)
#=>
[[false, :x], [:x, true]] # ~P | Q
# ~P Q
tbl is a hash to represent a boolean function. If the function has N variables, all key of tbl must be an array of N elements.
A element of the key array and a value of the hash should be one of follows:
-
false, 0
-
true, 1
-
:x
0 is same as false.
1 is same as false.
:x means “don’t care”.
For example, 3-inputs AND function can be given as follows.
tbl = {
[false, :x, :x ] => false,
[:x, false, :x ] => false,
[:x, :x, false] => false,
[true, true, true ] => true,
}
:x can be used for a value of tbl too. It means that the evaluated result of minimized boolean function is not specified: it may be evaluated to true or false.
tbl = {
[false, false] => false,
[false, true ] => true,
[true, false] => false,
[true, true ] => :x
}
If tbl doesn’t specify some combination of input variables, it assumes :x for such combination. The above function can be specified as follows.
tbl = {
[false, false] => false,
[false, true ] => true,
[true, false] => false,
}
QM.qm returns an array of arrays which represents the minimized boolean function.
The minimized boolean function is a disjunction of terms such as “term1 | term2 | term3 | …”.
The inner array represents a term. A term is a conjunction of input variables and negated input variables: “P & ~Q & ~R & S & …”.
97 98 99 100 101 102 103 104 105 106 |
# File 'lib/truthtable/qm.rb', line 97 def qm(tbl) return [] if tbl.empty? tbl = intern_tbl(tbl) prime_implicants = find_prime_implicants(tbl) essential_prime_implicants, chart = make_chart(prime_implicants, tbl) additional_prime_implicants = search_minimal_combination(chart) (essential_prime_implicants.keys + additional_prime_implicants).sort.reverse.map {|t| extern_term(t) } end |
.search_minimal_combination(chart) ⇒ Object
330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 |
# File 'lib/truthtable/qm.rb', line 330 def search_minimal_combination(chart) return [] if chart.empty? all_pi = {} chart.each {|pi_list| pi_list.each {|pi| all_pi[pi] = true } } q = {} all_pi.each_key {|pi| q[[pi]] = true } while true next_q = {} found = [] until q.empty? pi_set0, _ = q.shift pi_set = {} pi_set0.each {|pi| pi_set[pi] = true } if chart.all? {|pi_list| pi_list.any? {|pi| pi_set[pi] }} found << pi_set0 end all_pi.each_key {|pi| next if pi_set[pi] next_q[(pi_set0 + [pi]).sort] = true } end if !found.empty? return found.sort.first end q = next_q end end |