Class: DefaultFeatureReports
- Inherits:
-
OpenStudio::Measure::ReportingMeasure
- Object
- OpenStudio::Measure::ReportingMeasure
- DefaultFeatureReports
- Defined in:
- lib/measures/default_feature_reports/measure.rb
Overview
start the measure
Constant Summary collapse
- @@logger =
Logger.new($stdout)
Instance Method Summary collapse
-
#arguments ⇒ Object
define the arguments that the user will input.
-
#convert_units(value, from_units, to_units) ⇒ Object
unit conversion method.
-
#description ⇒ Object
human readable description.
-
#end_uses ⇒ Object
define enduses.
-
#energyPlusOutputRequests(runner, user_arguments) ⇒ Object
return a vector of IdfObject’s to request EnergyPlus objects needed by the run method rubocop:disable Naming/MethodName.
- #feature_qaqc_flags(runner) ⇒ Object
-
#format_datetime(date_time) ⇒ Object
format datetime.
-
#fuel_types ⇒ Object
define fuel types.
-
#modeler_description ⇒ Object
human readable description of modeling approach.
-
#name ⇒ Object
human readable name.
-
#other_fuels ⇒ Object
define other fuel types.
-
#run(runner, user_arguments) ⇒ Object
define what happens when the measure is run rubocop:disable Metrics/AbcSize.
-
#sql_query(runner, sql, report_name, query) ⇒ Object
sql_query method.
Instance Method Details
#arguments ⇒ Object
define the arguments that the user will input
31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 |
# File 'lib/measures/default_feature_reports/measure.rb', line 31 def arguments args = OpenStudio::Measure::OSArgumentVector.new id = OpenStudio::Measure::OSArgument.makeStringArgument('feature_id', false) id.setDisplayName('Feature unique identifier') id.setDefaultValue('1') args << id name = OpenStudio::Measure::OSArgument.makeStringArgument('feature_name', false) name.setDisplayName('Feature scenario specific name') name.setDefaultValue('name') args << name feature_type = OpenStudio::Measure::OSArgument.makeStringArgument('feature_type', false) feature_type.setDisplayName('URBANopt Feature Type') feature_type.setDefaultValue('Building') args << feature_type feature_location = OpenStudio::Measure::OSArgument.makeStringArgument('feature_location', false) feature_location.setDisplayName('URBANopt Feature Location') feature_location.setDefaultValue('0') args << feature_location # make an argument for the frequency reporting_frequency_chs = OpenStudio::StringVector.new reporting_frequency_chs << 'Detailed' reporting_frequency_chs << 'Timestep' reporting_frequency_chs << 'Hourly' reporting_frequency_chs << 'Daily' # reporting_frequency_chs << 'Zone Timestep' reporting_frequency_chs << 'BillingPeriod' # match it to utility bill object ## Utility report here to report the start and end for each fueltype reporting_frequency_chs << 'Monthly' reporting_frequency_chs << 'Runperiod' reporting_frequency = OpenStudio::Measure::OSArgument.makeChoiceArgument('reporting_frequency', reporting_frequency_chs, true) reporting_frequency.setDisplayName('Reporting Frequency') reporting_frequency.setDescription('The frequency at which to report timeseries output data.') reporting_frequency.setDefaultValue('Timestep') args << reporting_frequency return args end |
#convert_units(value, from_units, to_units) ⇒ Object
unit conversion method
335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 |
# File 'lib/measures/default_feature_reports/measure.rb', line 335 def convert_units(value, from_units, to_units) if value.nil? return nil end if from_units.nil? || to_units.nil? @runner.registerError("Cannot convert units...from_units: #{from_units} or to_units: #{to_units} left blank.") return nil end # apply unit conversion value_converted = OpenStudio.convert(value, from_units, to_units) if value_converted.is_initialized value = value_converted.get else @runner.registerError("Was not able to convert #{value} from #{from_units} to #{to_units}.") value = nil end return value end |
#description ⇒ Object
human readable description
21 22 23 |
# File 'lib/measures/default_feature_reports/measure.rb', line 21 def description return 'Writes default_feature_reports.json and default_feature_reports.csv files used by URBANopt Scenario Default Post Processor' end |
#end_uses ⇒ Object
define enduses
96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 |
# File 'lib/measures/default_feature_reports/measure.rb', line 96 def end_uses end_uses = { 'Heating' => 'Heating', 'Cooling' => 'Cooling', 'InteriorLights' => 'Interior Lighting', 'ExteriorLights' => 'Exterior Lighting', 'InteriorEquipment' => 'Interior Equipment', 'ExteriorEquipment' => 'Exterior Equipment', 'Fans' => 'Fans', 'Pumps' => 'Pumps', 'HeatRejection' => 'Heat Rejection', 'Humidifier' => 'Humidification', 'HeatRecovery' => 'Heat Recovery', 'WaterSystems' => 'Water Systems', 'Refrigeration' => 'Refrigeration', 'Generators' => 'Generators', 'Facility' => 'Facility' } return end_uses end |
#energyPlusOutputRequests(runner, user_arguments) ⇒ Object
return a vector of IdfObject’s to request EnergyPlus objects needed by the run method rubocop:disable Naming/MethodName
138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 |
# File 'lib/measures/default_feature_reports/measure.rb', line 138 def energyPlusOutputRequests(runner, user_arguments) super(runner, user_arguments) result = OpenStudio::IdfObjectVector.new reporting_frequency = runner.getStringArgumentValue('reporting_frequency', user_arguments) # Request the output for each end use/fuel type combination end_uses.each do |end_use| end_use, = end_use fuel_types.each do |fuel_type| fuel_type, = fuel_type variable_name = if end_use == 'Facility' "#{fuel_type}:#{end_use}" else "#{end_use}:#{fuel_type}" end result << OpenStudio::IdfObject.load("Output:Meter,#{variable_name},#{reporting_frequency};").get end end # Create a custom meter for OtherFuels other_fuel_uses = ['HeatRejection', 'Heating', 'WaterSystems', 'InteriorEquipment'] custom_meter_facility = 'Meter:Custom,OtherFuels:Facility,OtherFuel2' other_fuel_uses.each do |end_use| custom_meter = "Meter:Custom,#{end_use}:OtherFuels,OtherFuel2" other_fuels.each do |other_fuel| other_fuel = other_fuel.gsub(' ', '') result << OpenStudio::IdfObject.load("Output:Meter,#{end_use}:#{other_fuel},#{reporting_frequency};").get custom_meter_facility += ",,#{end_use}:#{other_fuel}" custom_meter += ",,#{end_use}:#{other_fuel}" end custom_meter += ';' result << OpenStudio::IdfObject.load(custom_meter).get result << OpenStudio::IdfObject.load("Output:Meter,#{end_use}:OtherFuels,#{reporting_frequency};").get end result << OpenStudio::IdfObject.load("#{custom_meter_facility};").get result << OpenStudio::IdfObject.load("Output:Meter,OtherFuels:Facility,#{reporting_frequency};").get # Request the output for each end use/fuel type combination result << OpenStudio::IdfObject.load("Output:Meter:MeterFileOnly,Electricity:Facility,#{reporting_frequency};").get result << OpenStudio::IdfObject.load("Output:Meter:MeterFileOnly,ElectricityProduced:Facility,#{reporting_frequency};").get result << OpenStudio::IdfObject.load("Output:Meter:MeterFileOnly,NaturalGas:Facility,#{reporting_frequency};").get result << OpenStudio::IdfObject.load("Output:Meter:MeterFileOnly,DistrictCooling:Facility,#{reporting_frequency};").get result << OpenStudio::IdfObject.load("Output:Meter:MeterFileOnly,DistrictHeating:Facility,#{reporting_frequency};").get result << OpenStudio::IdfObject.load("Output:Meter:MeterFileOnly,Propane:Facility,#{reporting_frequency};").get result << OpenStudio::IdfObject.load("Output:Meter:MeterFileOnly,FuelOilNo2:Facility,#{reporting_frequency};").get # result << OpenStudio::IdfObject.load("Output:Meter:MeterFileOnly,Cooling:Electricity,#{reporting_frequency};").get # result << OpenStudio::IdfObject.load("Output:Meter:MeterFileOnly,Heating:Electricity,#{reporting_frequency};").get # result << OpenStudio::IdfObject.load("Output:Meter:MeterFileOnly,InteriorLights:Electricity,#{reporting_frequency};").get # result << OpenStudio::IdfObject.load("Output:Meter:MeterFileOnly,ExteriorLights:Electricity,#{reporting_frequency};").get # result << OpenStudio::IdfObject.load("Output:Meter:MeterFileOnly,InteriorEquipment:Electricity,#{reporting_frequency};").get # result << OpenStudio::IdfObject.load("Output:Meter:MeterFileOnly,Fans:Electricity,#{reporting_frequency};").get # result << OpenStudio::IdfObject.load("Output:Meter:MeterFileOnly,Pumps:Electricity,#{reporting_frequency};").get # result << OpenStudio::IdfObject.load("Output:Meter:MeterFileOnly,WaterSystems:Electricity,#{reporting_frequency};").get # result << OpenStudio::IdfObject.load("Output:Meter:MeterFileOnly,Heating:NaturalGas,#{reporting_frequency};").get # result << OpenStudio::IdfObject.load("Output:Meter:MeterFileOnly,WaterSystems:NaturalGas,#{reporting_frequency};").get # result << OpenStudio::IdfObject.load("Output:Meter:MeterFileOnly,InteriorEquipment:NaturalGas,#{reporting_frequency};").get result << OpenStudio::IdfObject.load('Output:Variable,*,Heating Coil Heating Rate,hourly; !- HVAC Average [W];').get # result << OpenStudio::IdfObject.load("Output:Variable,*,Exterior Equipment:Electric Vehicles,#{reporting_frequency};").get ## add environmental factor outputs # result << OpenStudio::IdfObject.load("Output:Meter:MeterFileOnly,Output:EnvironmentalImpactFactors,#{reporting_frequency};").get # result << OpenStudio::IdfObject.load("Output:Variable,*,Environmental Impact Total N2O Emissions Carbon Equivalent Mass,#{reporting_frequency}; !- HVAC Sum [kg];").get # result << OpenStudio::IdfObject.load("Output:Variable,*,Environmental Impact Total CH4 Emissions Carbon Equivalent Mass,#{reporting_frequency}; !- HVAC Sum [kg];").get # result << OpenStudio::IdfObject.load("Output:Variable,*,Environmental Impact Total CO2 Emissions Carbon Equivalent Mass,#{reporting_frequency}; !- HVAC Sum [kg];").get # result << OpenStudio::IdfObject.load("Output:Variable,*,Environmental Impact NaturalGas CO2 Emissions Mass,#{reporting_frequency}; !- HVAC Sum [kg];").get # result << OpenStudio::IdfObject.load("Output:Variable,*,Environmental Impact NaturalGas CH4 Emissions Mass,#{reporting_frequency}; !- HVAC Sum [kg];").get # result << OpenStudio::IdfObject.load("Output:Variable,*,Environmental Impact NaturalGas N2O Emissions Mass,#{reporting_frequency}; !- HVAC Sum [kg];").get timeseries_data = ['District Cooling Chilled Water Rate', 'District Cooling Mass Flow Rate', 'District Cooling Inlet Temperature', 'District Cooling Outlet Temperature', 'District Heating Hot Water Rate', 'District Heating Mass Flow Rate', 'District Heating Inlet Temperature', 'District Heating Outlet Temperature', 'Cooling Coil Total Cooling Rate', 'Heating Coil Heating Rate', 'ExteriorEquipment:Electricity'] tes_timeseries_data = ['Ice Thermal Storage End Fraction', 'Cooling coil Ice Thermal Storage End Fraction'] ev_timeseries_data = ['Exterior Equipment:Electric Vehicles'] emissions_timeseries_data = ['Future_Annual_Electricity_Emissions', 'Future_Hourly_Electricity_Emissions', 'Historical_Annual_Electricity_Emissions', 'Historical_Hourly_Electricity_Emissions', 'Future_Annual_Electricity_Emissions_Intensity', 'Future_Hourly_Electricity_Emissions_Intensity', 'Historical_Annual_Electricity_Emissions_Intensity', 'Historical_Hourly_Electricity_Emissions_Intensity'] timeseries_data += tes_timeseries_data timeseries_data += emissions_timeseries_data timeseries_data.each do |ts| result << OpenStudio::IdfObject.load("Output:Variable,*,#{ts},#{reporting_frequency};").get end # use the built-in error checking if !runner.validateUserArguments(arguments, user_arguments) return result end return result end |
#feature_qaqc_flags(runner) ⇒ Object
257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 |
# File 'lib/measures/default_feature_reports/measure.rb', line 257 def feature_qaqc_flags(runner) # QAQC flags by category qaqc_flags_hash = {} # Make a hash for count of flags of each category runner.workflow.workflowSteps.each do |step| # Go through all the steps if step.to_MeasureStep.is_initialized measure_step = step.to_MeasureStep.get measure_name = measure_step.measureDirName if measure_step.name.is_initialized measure_name = measure_step.name.get end if measure_name.include? 'qaqc' puts "measure_name = #{measure_name}" if measure_step.result.is_initialized result = measure_step.result.get puts " result = #{result}" ## Adding quaqc_flags_list to check the step value name since units key is missing from the result ## It does show in the out.osw but not in the runner.workflow.workflowSteps object # use this list to define the flags you want to report qaqc_flags_list = [ 'eui_reasonableness', 'end_use_by_category', 'mechanical_system_part_load_efficiency', 'simultaneous_heating_and_cooling', 'internal_loads', 'schedules', 'envelope_r_value', 'domestic_hot_water', 'mechanical_system_efficiency', 'supply_and_zone_air_temperature', 'total_qaqc_flags' ] result.stepValues.each do |step_value| # get name name = step_value.name if qaqc_flags_list.include? name # get value # check if value, double, int, or bool value_type = step_value.variantType.valueDescription case value_type when 'Double' value = step_value.valueAsDouble when 'Integer' value = step_value.valueAsInteger when 'Boolean' value = step_value.valueAsBoolean when 'String' value = step_value.valueAsString else # catchall for unexpected value types value = step_value.valueAsVariant.to_s end if qaqc_flags_hash[name] qaqc_flags_hash[name] += value else qaqc_flags_hash[name] = value end end end puts "qaqc_flags_hash = #{qaqc_flags_hash}" # Hack to put 'total_qaqc_flags' at the end of the hash temp_hash_for_ordering = { 'total_qaqc_flags' => qaqc_flags_hash['total_qaqc_flags'] } qaqc_flags_hash.delete('total_qaqc_flags') qaqc_flags_hash['total_qaqc_flags'] = temp_hash_for_ordering['total_qaqc_flags'] end end end end return qaqc_flags_hash end |
#format_datetime(date_time) ⇒ Object
format datetime
119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 |
# File 'lib/measures/default_feature_reports/measure.rb', line 119 def format_datetime(date_time) date_time.tr!('-', '/') date_time.gsub!('Jan', '01') date_time.gsub!('Feb', '02') date_time.gsub!('Mar', '03') date_time.gsub!('Apr', '04') date_time.gsub!('May', '05') date_time.gsub!('Jun', '06') date_time.gsub!('Jul', '07') date_time.gsub!('Aug', '08') date_time.gsub!('Sep', '09') date_time.gsub!('Oct', '10') date_time.gsub!('Nov', '11') date_time.gsub!('Dec', '12') return date_time end |
#fuel_types ⇒ Object
define fuel types
76 77 78 79 80 81 82 83 84 85 86 87 88 |
# File 'lib/measures/default_feature_reports/measure.rb', line 76 def fuel_types fuel_types = { 'Electricity' => 'Electricity', 'NaturalGas' => 'Natural Gas', 'FuelOilNo2' => 'Fuel Oil #2', 'Propane' => 'Propane', 'DistrictCooling' => 'District Cooling', 'DistrictHeating' => 'District Heating', 'Water' => 'Water' } return fuel_types end |
#modeler_description ⇒ Object
human readable description of modeling approach
26 27 28 |
# File 'lib/measures/default_feature_reports/measure.rb', line 26 def modeler_description return 'This measure only allows for one feature_report per simulation. If multiple features are simulated in a single simulation, a new measure must be written to disaggregate simulation results to multiple features.' end |
#name ⇒ Object
human readable name
16 17 18 |
# File 'lib/measures/default_feature_reports/measure.rb', line 16 def name return 'DefaultFeatureReports' end |
#other_fuels ⇒ Object
define other fuel types
91 92 93 |
# File 'lib/measures/default_feature_reports/measure.rb', line 91 def other_fuels return ['Gasoline', 'Diesel', 'Coal', 'Fuel Oil No 1', 'Other Fuel 1', 'Steam'] end |
#run(runner, user_arguments) ⇒ Object
define what happens when the measure is run rubocop:disable Metrics/AbcSize
358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 846 847 848 849 850 851 852 853 854 855 856 857 858 859 860 861 862 863 864 865 866 867 868 869 870 871 872 873 874 875 876 877 878 879 880 881 882 883 884 885 886 887 888 889 890 891 892 893 894 895 896 897 898 899 900 901 902 903 904 905 906 907 908 909 910 911 912 913 914 915 916 917 918 919 920 921 922 923 924 925 926 927 928 929 930 931 932 933 934 935 936 937 938 939 940 941 942 943 944 945 946 947 948 949 950 951 952 953 954 955 956 957 958 959 960 961 962 963 964 965 966 967 968 969 970 971 972 973 974 975 976 977 978 979 980 981 982 983 984 985 986 987 988 989 990 991 992 993 994 995 996 997 998 999 1000 1001 1002 1003 1004 1005 1006 1007 1008 1009 1010 1011 1012 1013 1014 1015 1016 1017 1018 1019 1020 1021 1022 1023 1024 1025 1026 1027 1028 1029 1030 1031 1032 1033 1034 1035 1036 1037 1038 1039 1040 1041 1042 1043 1044 1045 1046 1047 1048 1049 1050 1051 1052 1053 1054 1055 1056 1057 1058 1059 1060 1061 1062 1063 1064 1065 1066 1067 1068 1069 1070 1071 1072 1073 1074 1075 1076 1077 1078 1079 1080 1081 1082 1083 1084 1085 1086 1087 1088 1089 1090 1091 1092 1093 1094 1095 1096 1097 1098 1099 1100 1101 1102 1103 1104 1105 1106 1107 1108 1109 1110 1111 1112 1113 1114 1115 1116 1117 1118 1119 1120 1121 1122 1123 1124 1125 1126 1127 1128 1129 1130 1131 1132 1133 1134 1135 1136 1137 1138 1139 1140 1141 1142 1143 1144 1145 1146 1147 1148 1149 1150 1151 1152 1153 1154 1155 1156 1157 1158 1159 1160 1161 1162 1163 1164 1165 1166 1167 1168 1169 1170 1171 1172 1173 1174 1175 1176 1177 1178 1179 1180 1181 1182 1183 1184 1185 1186 1187 1188 1189 1190 1191 1192 1193 1194 1195 1196 1197 1198 1199 1200 1201 1202 1203 1204 1205 1206 1207 1208 1209 1210 1211 1212 1213 1214 1215 1216 1217 1218 1219 1220 1221 1222 1223 1224 1225 1226 1227 1228 1229 1230 1231 1232 1233 1234 1235 1236 1237 1238 1239 1240 1241 1242 1243 1244 1245 1246 1247 1248 1249 1250 1251 1252 1253 1254 1255 1256 1257 1258 1259 1260 1261 1262 1263 1264 1265 1266 1267 1268 1269 1270 1271 1272 1273 1274 1275 1276 1277 1278 1279 1280 1281 1282 1283 1284 1285 1286 1287 1288 1289 1290 1291 1292 1293 1294 1295 1296 1297 1298 1299 1300 1301 1302 1303 1304 1305 1306 1307 1308 1309 1310 1311 1312 1313 1314 1315 1316 1317 1318 1319 1320 1321 1322 1323 1324 1325 1326 1327 1328 1329 1330 1331 1332 1333 1334 1335 1336 1337 1338 1339 1340 1341 1342 1343 1344 1345 1346 1347 1348 1349 1350 1351 1352 1353 1354 1355 1356 1357 1358 1359 1360 1361 1362 1363 1364 1365 1366 1367 1368 1369 1370 1371 1372 1373 1374 1375 1376 1377 1378 1379 1380 1381 1382 1383 1384 1385 1386 1387 1388 1389 1390 1391 1392 1393 1394 1395 1396 1397 1398 1399 1400 1401 1402 1403 1404 1405 1406 1407 1408 1409 1410 1411 1412 1413 1414 1415 1416 1417 1418 1419 1420 1421 1422 1423 1424 1425 1426 1427 1428 1429 1430 1431 1432 1433 1434 1435 1436 1437 1438 1439 1440 1441 1442 1443 1444 1445 1446 1447 1448 1449 1450 1451 1452 1453 1454 1455 1456 1457 1458 1459 1460 1461 1462 1463 1464 1465 1466 1467 1468 1469 1470 1471 1472 1473 1474 1475 1476 1477 1478 1479 1480 1481 1482 1483 1484 1485 1486 1487 1488 1489 1490 1491 1492 1493 1494 1495 |
# File 'lib/measures/default_feature_reports/measure.rb', line 358 def run(runner, user_arguments) super(runner, user_arguments) # use the built-in error checking unless runner.validateUserArguments(arguments, user_arguments) return false end # use the built-in error checking if !runner.validateUserArguments(arguments, user_arguments) return false end feature_id = runner.getStringArgumentValue('feature_id', user_arguments) feature_name = runner.getStringArgumentValue('feature_name', user_arguments) feature_type = runner.getStringArgumentValue('feature_type', user_arguments) feature_location = runner.getStringArgumentValue('feature_location', user_arguments) # Assign the user inputs to variables reporting_frequency = runner.getStringArgumentValue('reporting_frequency', user_arguments) # BilingPeriod reporting frequency not implemented yet if reporting_frequency == 'BillingPeriod' @@logger.error('BillingPeriod frequency is not implemented yet') end # cache runner for this instance of the measure @runner = runner # get the WorkflowJSON object workflow = runner.workflow # get the last model and sql file model = runner.lastOpenStudioModel if model.empty? runner.registerError('Cannot find last model.') return false end model = model.get sql_file = runner.lastEnergyPlusSqlFile if sql_file.empty? runner.registerError('Cannot find last sql file.') return false end sql_file = sql_file.get model.setSqlFile(sql_file) # Get the weather file run period (as opposed to design day run period) ann_env_pd = nil sql_file.availableEnvPeriods.each do |env_pd| env_type = sql_file.environmentType(env_pd) if env_type.is_initialized && (env_type.get == OpenStudio::EnvironmentType.new('WeatherRunPeriod')) ann_env_pd = env_pd end end if ann_env_pd == false runner.registerError("Can't find a weather runperiod, make sure you ran an annual simulation, not just the design days.") return false end # get building from model building = model.getBuilding # get surfaces from model surfaces = model.getSurfaces # get epw_file epw_file = runner.lastEpwFile if epw_file.empty? runner.registerError('Cannot find last epw file.') return false end epw_file = epw_file.get # create output feature_report report object feature_report = URBANopt::Reporting::DefaultReports::FeatureReport.new feature_report.id = feature_id feature_report.name = feature_name feature_report.feature_type = feature_type feature_report.directory_name = workflow.absoluteRunDir timesteps_per_hour = model.getTimestep.numberOfTimestepsPerHour feature_report.timesteps_per_hour = timesteps_per_hour feature_report.simulation_status = 'Complete' feature_report.reporting_periods << URBANopt::Reporting::DefaultReports::ReportingPeriod.new ########################################################################### ## # Get Location information and store in the feature_report ## if feature_location.include? '[' # get longitude from feature_location longitude = (feature_location.split(',')[0].delete! '[]').to_f # get latitude from feature_location latitude = (feature_location.split(',')[1].delete! '[]').to_f # latitude feature_report.location.latitude_deg = latitude # longitude feature_report.location.longitude_deg = longitude end # surface_elevation elev = sql_query(runner, sql_file, 'InputVerificationandResultsSummary', "TableName='General' AND RowName='Elevation' AND ColumnName='Value'") feature_report.location.surface_elevation_ft = elev ########################################################################## ## # Get program information and store in the feature_report ## # floor_area floor_area = sql_query(runner, sql_file, 'AnnualBuildingUtilityPerformanceSummary', "TableName='Building Area' AND RowName='Total Building Area' AND ColumnName='Area'") feature_report.program.floor_area_sqft = convert_units(floor_area, 'm^2', 'ft^2') # conditioned_area conditioned_area = sql_query(runner, sql_file, 'AnnualBuildingUtilityPerformanceSummary', "TableName='Building Area' AND RowName='Net Conditioned Building Area' AND ColumnName='Area'") feature_report.program.conditioned_area_sqft = convert_units(conditioned_area, 'm^2', 'ft^2') # unconditioned_area unconditioned_area = sql_query(runner, sql_file, 'AnnualBuildingUtilityPerformanceSummary', "TableName='Building Area' AND RowName='Unconditioned Building Area' AND ColumnName='Area'") feature_report.program.unconditioned_area_sqft = convert_units(unconditioned_area, 'm^2', 'ft^2') if building.standardsBuildingType.is_initialized && ['Residential'].include?(building.standardsBuildingType.get) floor_area -= unconditioned_area # conditioned floor area only end # maximum_number_of_stories number_of_stories = building.standardsNumberOfStories.get if building.standardsNumberOfStories.is_initialized number_of_stories ||= 1 feature_report.program.maximum_number_of_stories = number_of_stories # maximum_number_of_stories_above_ground number_of_stories_above_ground = building.standardsNumberOfAboveGroundStories.get if building.standardsNumberOfAboveGroundStories.is_initialized number_of_stories_above_ground ||= 1 feature_report.program.maximum_number_of_stories_above_ground = number_of_stories_above_ground # maximum_roof_height floor_to_floor_height = building.nominalFloortoFloorHeight.get if building.nominalFloortoFloorHeight.is_initialized floor_to_floor_height ||= 8 feature_report.program.maximum_roof_height_ft = feature_report.program.maximum_number_of_stories_above_ground * floor_to_floor_height # footprint_area if building.standardsBuildingType.is_initialized if !['Residential'].include?(building.standardsBuildingType.get) feature_report.program.footprint_area_sqft = feature_report.program.floor_area_sqft / number_of_stories else feature_report.program.footprint_area_sqft = convert_units(floor_area, 'm^2', 'ft^2') / building.additionalProperties.getFeatureAsInteger('NumberOfConditionedStories').get end end # number_of_residential_units number_of_living_units = building.standardsNumberOfLivingUnits.get if building.standardsNumberOfLivingUnits.is_initialized number_of_living_units ||= 1 feature_report.program.number_of_residential_units = number_of_living_units ## building_types # get an array of the model spaces spaces = model.getSpaces # get array of model space types space_types = model.getSpaceTypes # create a hash for space_type_areas (spcace types as keys and their areas as values) space_type_areas = {} model.getSpaceTypes.each do |space_type| building_type = space_type.standardsBuildingType if building_type.empty? building_type = 'unknown' else building_type = building_type.get end next if ['Residential'].include?(building_type) # space types with empty building type fields will inherit from the building object space_type_areas[building_type] = 0 if space_type_areas[building_type].nil? space_type_areas[building_type] += convert_units(space_type.floorArea, 'm^2', 'ft^2') end # create a hash for space_type_occupancy (spcace types as keys and their occupancy as values) space_type_occupancy = {} spaces.each do |space| if space.spaceType.empty? raise 'space.spaceType is empty. Make sure spaces have a space type' else building_type = space.spaceType.get.standardsBuildingType end if building_type.empty? building_type = 'unknown' else building_type = building_type.get end space_type_occupancy[building_type] = 0 if space_type_occupancy[building_type].nil? space_type_occupancy[building_type] += space.numberOfPeople end # combine all in a building_types array building_types = [] for i in 0..(space_type_areas.size - 1) building_types << { building_type: space_type_areas.keys[i], floor_area: space_type_areas.values[i], maximum_occupancy: space_type_occupancy.values[i] } end # add results to the feature report JSON feature_report.program.building_types = building_types ## window_area # north_window_area north_window_area = sql_query(runner, sql_file, 'InputVerificationandResultsSummary', "TableName='Window-Wall Ratio' AND RowName='Window Opening Area' AND ColumnName='North (315 to 45 deg)'").to_f feature_report.program.window_area_sqft[:north_window_area_sqft] = convert_units(north_window_area, 'm^2', 'ft^2') # south_window_area south_window_area = sql_query(runner, sql_file, 'InputVerificationandResultsSummary', "TableName='Window-Wall Ratio' AND RowName='Window Opening Area' AND ColumnName='South (135 to 225 deg)'").to_f feature_report.program.window_area_sqft[:south_window_area_sqft] = convert_units(south_window_area, 'm^2', 'ft^2') # east_window_area east_window_area = sql_query(runner, sql_file, 'InputVerificationandResultsSummary', "TableName='Window-Wall Ratio' AND RowName='Window Opening Area' AND ColumnName='East (45 to 135 deg)'").to_f feature_report.program.window_area_sqft[:east_window_area_sqft] = convert_units(east_window_area, 'm^2', 'ft^2') # west_window_area west_window_area = sql_query(runner, sql_file, 'InputVerificationandResultsSummary', "TableName='Window-Wall Ratio' AND RowName='Window Opening Area' AND ColumnName='West (225 to 315 deg)'").to_f feature_report.program.window_area_sqft[:west_window_area_sqft] = convert_units(west_window_area, 'm^2', 'ft^2') # total_window_area total_window_area = north_window_area + south_window_area + east_window_area + west_window_area feature_report.program.window_area_sqft[:total_window_area_sqft] = convert_units(total_window_area, 'm^2', 'ft^2') ## wall_area # north_wall_area north_wall_area = sql_query(runner, sql_file, 'InputVerificationandResultsSummary', "TableName='Window-Wall Ratio' AND RowName='Gross Wall Area' AND ColumnName='North (315 to 45 deg)'").to_f feature_report.program.wall_area_sqft[:north_wall_area_sqft] = convert_units(north_wall_area, 'm^2', 'ft^2') # south_wall_area south_wall_area = sql_query(runner, sql_file, 'InputVerificationandResultsSummary', "TableName='Window-Wall Ratio' AND RowName='Gross Wall Area' AND ColumnName='South (135 to 225 deg)'").to_f feature_report.program.wall_area_sqft[:south_wall_area_sqft] = convert_units(south_wall_area, 'm^2', 'ft^2') # east_wall_area east_wall_area = sql_query(runner, sql_file, 'InputVerificationandResultsSummary', "TableName='Window-Wall Ratio' AND RowName='Gross Wall Area' AND ColumnName='East (45 to 135 deg)'").to_f feature_report.program.wall_area_sqft[:east_wall_area_sqft] = convert_units(east_wall_area, 'm^2', 'ft^2') # west_wall_area west_wall_area = sql_query(runner, sql_file, 'InputVerificationandResultsSummary', "TableName='Window-Wall Ratio' AND RowName='Gross Wall Area' AND ColumnName='West (225 to 315 deg)'").to_f feature_report.program.wall_area_sqft[:west_wall_area_sqft] = convert_units(west_wall_area, 'm^2', 'ft^2') # total_wall_area total_wall_area = north_wall_area + south_wall_area + east_wall_area + west_wall_area feature_report.program.wall_area_sqft[:total_wall_area_sqft] = convert_units(total_wall_area, 'm^2', 'ft^2') # total_roof_area total_roof_area = 0.0 surfaces.each do |surface| if (surface.outsideBoundaryCondition == 'Outdoors') && (surface.surfaceType == 'RoofCeiling') total_roof_area += surface.netArea end end total_roof_area_sqft = convert_units(total_roof_area, 'm^2', 'ft^2') feature_report.program.roof_area_sqft[:total_roof_area_sqft] = total_roof_area_sqft # available_roof_area_sqft # RK: a more robust method should be implemented to find the available_roof_area # assign available roof area to be a percentage of the total roof area if building_types[0][:building_type].include? 'Single-Family Detached' feature_report.program.roof_area_sqft[:available_roof_area_sqft] = 0.45 * total_roof_area_sqft else feature_report.program.roof_area_sqft[:available_roof_area_sqft] = 0.75 * total_roof_area_sqft end # RK: Temporary solution: assign available roof area to be equal to total roof area # feature_report.program.roof_area_sqft[:available_roof_area_sqft] = total_roof_area_sqft # orientation # RK: a more robust method should be implemented to find orientation(finding main axis of the building using aspect ratio) building_rotation = model.getBuilding.northAxis feature_report.program.orientation_deg = building_rotation # aspect_ratio north_wall_area = sql_query(runner, sql_file, 'InputVerificationandResultsSummary', "TableName='Window-Wall Ratio' AND RowName='Gross Wall Area' AND ColumnName='North (315 to 45 deg)'") east_wall_area = sql_query(runner, sql_file, 'InputVerificationandResultsSummary', "TableName='Window-Wall Ratio' AND RowName='Gross Wall Area' AND ColumnName='East (45 to 135 deg)'") aspect_ratio = north_wall_area / east_wall_area if north_wall_area != 0 && east_wall_area != 0 aspect_ratio ||= nil feature_report.program.aspect_ratio = aspect_ratio # total_construction_cost total_construction_cost = sql_query(runner, sql_file, 'Life-Cycle Cost Report', "TableName='Present Value for Recurring, Nonrecurring and Energy Costs (Before Tax)' AND RowName='LCC_MAT - BUILDING - LIFE CYCLE COSTS' AND ColumnName='Cost'") feature_report.program.total_construction_cost_dollar = total_construction_cost # packaged thermal storage capacities by cooling coil ptes_keys = sql_file.availableKeyValues('RUN Period 1', 'Zone Timestep', 'Cooling Coil Ice Thermal Storage End Fraction') if ptes_keys.empty? ptes_size = nil runner.registerWarning('Query failed for Packaged Ice Thermal Storage Capacity') else begin ptes_size = 0 ptes_keys.each do |pk| ptes_size += sql_query(runner, sql_file, 'ComponentSizingSummary', "TableName='Coil:Cooling:DX:SingleSpeed:ThermalStorage' AND RowName='#{pk}' AND ColumnName='Ice Storage Capacity'").to_f end ptes_size = convert_units(ptes_size, 'GJ', 'kWh') rescue StandardError runner.registerWarning('Query ptes_size.get failed') end end feature_report.thermal_storage.ptes_size_kwh = ptes_size # get the central tank thermal storage capacity its_size = nil its_size_index = sql_file.execAndReturnFirstDouble("SELECT ReportVariableDataDictionaryIndex FROM ReportVariableDataDictionary WHERE VariableName='Ice Thermal Storage Capacity'") if its_size_index.empty? runner.registerWarning('Query failed for Ice Thermal Storage Capacity') else begin its_size = sql_file.execAndReturnFirstDouble("SELECT VariableValue FROM ReportVariableData WHERE ReportVariableDataDictionaryIndex=#{its_size_index}").get its_size = convert_units(its_size.to_f, 'GJ', 'kWh') rescue StandardError runner.registerWarning('Query its_size.get failed') end end feature_report.thermal_storage.its_size_kwh = its_size ############################################################################ ## # Get Reporting Periods information and store in the feature_report ## # start_date # month begin_month = model.getRunPeriod.getBeginMonth feature_report.reporting_periods[0].start_date.month = begin_month # day_of_month begin_day_of_month = model.getRunPeriod.getBeginDayOfMonth feature_report.reporting_periods[0].start_date.day_of_month = begin_day_of_month # year begin_year = model.getYearDescription.calendarYear feature_report.reporting_periods[0].start_date.year = begin_year # end_date # month end_month = model.getRunPeriod.getEndMonth feature_report.reporting_periods[0].end_date.month = end_month # day_of_month end_day_of_month = model.getRunPeriod.getEndDayOfMonth feature_report.reporting_periods[0].end_date.day_of_month = end_day_of_month # year end_year = model.getYearDescription.calendarYear feature_report.reporting_periods[0].end_date.year = end_year # total_site_energy total_site_energy = sql_query(runner, sql_file, 'AnnualBuildingUtilityPerformanceSummary', "TableName='Site and Source Energy' AND RowName='Total Site Energy' AND ColumnName='Total Energy'") feature_report.reporting_periods[0].total_site_energy_kwh = convert_units(total_site_energy, 'GJ', 'kWh') # total_source_energy total_source_energy = sql_query(runner, sql_file, 'AnnualBuildingUtilityPerformanceSummary', "TableName='Site and Source Energy' AND RowName='Total Source Energy' AND ColumnName='Total Energy'") feature_report.reporting_periods[0].total_source_energy_kwh = convert_units(total_source_energy, 'GJ', 'kWh') # EUI is only valid with a full year of energy data if begin_month == 1 && begin_day_of_month == 1 && end_month == 12 && end_day_of_month == 31 # calculate site EUI site_EUI_kwh_per_m2 = feature_report.reporting_periods[0].total_site_energy_kwh / floor_area site_EUI_kbtu_per_ft2 = convert_units(total_site_energy, 'GJ', 'kBtu') / convert_units(floor_area, 'm^2', 'ft^2') # add site EUI to feature report feature_report.reporting_periods[0].site_EUI_kwh_per_m2 = site_EUI_kwh_per_m2 feature_report.reporting_periods[0].site_EUI_kbtu_per_ft2 = site_EUI_kbtu_per_ft2 # calculate source EUI source_EUI_kwh_per_m2 = feature_report.reporting_periods[0].total_source_energy_kwh / floor_area source_EUI_kbtu_per_ft2 = convert_units(total_source_energy, 'GJ', 'kBtu') / convert_units(floor_area, 'm^2', 'ft^2') # add source EUI to feature report feature_report.reporting_periods[0].source_EUI_kwh_per_m2 = source_EUI_kwh_per_m2 feature_report.reporting_periods[0].source_EUI_kbtu_per_ft2 = source_EUI_kbtu_per_ft2 end # net_site_energy net_site_energy = sql_query(runner, sql_file, 'AnnualBuildingUtilityPerformanceSummary', "TableName='Site and Source Energy' AND RowName='Net Site Energy' AND ColumnName='Total Energy'") feature_report.reporting_periods[0].net_site_energy_kwh = convert_units(net_site_energy, 'GJ', 'kWh') # net_source_energy net_source_energy = sql_query(runner, sql_file, 'AnnualBuildingUtilityPerformanceSummary', "TableName='Site and Source Energy' AND RowName='Net Source Energy' AND ColumnName='Total Energy'") feature_report.reporting_periods[0].net_source_energy_kwh = convert_units(net_source_energy, 'GJ', 'kWh') # electricity electricity = sql_query(runner, sql_file, 'AnnualBuildingUtilityPerformanceSummary', "TableName='End Uses' AND RowName='Total End Uses' AND ColumnName='Electricity'") feature_report.reporting_periods[0].electricity_kwh = convert_units(electricity, 'GJ', 'kWh') # natural_gas natural_gas = sql_query(runner, sql_file, 'AnnualBuildingUtilityPerformanceSummary', "TableName='End Uses' AND RowName='Total End Uses' AND ColumnName='Natural Gas'") feature_report.reporting_periods[0].natural_gas_kwh = convert_units(natural_gas, 'GJ', 'kWh') # propane propane = sql_query(runner, sql_file, 'AnnualBuildingUtilityPerformanceSummary', "TableName='End Uses' AND RowName='Total End Uses' AND ColumnName='Propane'") feature_report.reporting_periods[0].propane_kwh = convert_units(propane, 'GJ', 'kWh') # fuel_oil fuel_oil = sql_query(runner, sql_file, 'AnnualBuildingUtilityPerformanceSummary', "TableName='End Uses' AND RowName='Total End Uses' AND ColumnName='Fuel Oil No 2'") feature_report.reporting_periods[0].fuel_oil_kwh = convert_units(fuel_oil, 'GJ', 'kWh') # other_fuels gasoline = sql_query(runner, sql_file, 'AnnualBuildingUtilityPerformanceSummary', "TableName='End Uses' AND RowName='Total End Uses' AND ColumnName='Gasoline'") diesel = sql_query(runner, sql_file, 'AnnualBuildingUtilityPerformanceSummary', "TableName='End Uses' AND RowName='Total End Uses' AND ColumnName='Diesel'") coal = sql_query(runner, sql_file, 'AnnualBuildingUtilityPerformanceSummary', "TableName='End Uses' AND RowName='Total End Uses' AND ColumnName='Coal'") fueloilno1 = sql_query(runner, sql_file, 'AnnualBuildingUtilityPerformanceSummary', "TableName='End Uses' AND RowName='Total End Uses' AND ColumnName='Fuel Oil No 1'") otherfuel1 = sql_query(runner, sql_file, 'AnnualBuildingUtilityPerformanceSummary', "TableName='End Uses' AND RowName='Total End Uses' AND ColumnName='Other Fuel 1'") steam = sql_query(runner, sql_file, 'AnnualBuildingUtilityPerformanceSummary', "TableName='End Uses' AND RowName='Total End Uses' AND ColumnName='Steam'") # ensure not nil feature_report.reporting_periods[0].other_fuels_kwh = 0.0 feature_report.reporting_periods[0].other_fuels_kwh += convert_units(gasoline, 'GJ', 'kWh') unless gasoline.nil? feature_report.reporting_periods[0].other_fuels_kwh += convert_units(diesel, 'GJ', 'kWh') unless diesel.nil? feature_report.reporting_periods[0].other_fuels_kwh += convert_units(coal, 'GJ', 'kWh') unless coal.nil? feature_report.reporting_periods[0].other_fuels_kwh += convert_units(fueloilno1, 'GJ', 'kWh') unless fueloilno1.nil? feature_report.reporting_periods[0].other_fuels_kwh += convert_units(otherfuel1, 'GJ', 'kWh') unless otherfuel1.nil? feature_report.reporting_periods[0].other_fuels_kwh += convert_units(steam, 'GJ', 'kWh') unless steam.nil? # district_cooling district_cooling = sql_query(runner, sql_file, 'AnnualBuildingUtilityPerformanceSummary', "TableName='End Uses' AND RowName='Total End Uses' AND ColumnName='District Cooling'") feature_report.reporting_periods[0].district_cooling_kwh = convert_units(district_cooling, 'GJ', 'kWh') if building.standardsBuildingType.is_initialized && ['Residential'].include?(building.standardsBuildingType.get) feature_report.reporting_periods[0].district_cooling_kwh = 0.0 end # district_heating district_heating = sql_query(runner, sql_file, 'AnnualBuildingUtilityPerformanceSummary', "TableName='End Uses' AND RowName='Total End Uses' AND ColumnName='District Heating'") feature_report.reporting_periods[0].district_heating_kwh = convert_units(district_heating, 'GJ', 'kWh') if building.standardsBuildingType.is_initialized && ['Residential'].include?(building.standardsBuildingType.get) feature_report.reporting_periods[0].district_heating_kwh = 0.0 end # water water = sql_query(runner, sql_file, 'AnnualBuildingUtilityPerformanceSummary', "TableName='End Uses' AND RowName='Total End Uses' AND ColumnName='Water'") feature_report.reporting_periods[0].water_qbft = water # electricity_produced electricity_produced = sql_query(runner, sql_file, 'AnnualBuildingUtilityPerformanceSummary', "TableName='Electric Loads Satisfied' AND RowName='Total On-Site and Utility Electric Sources' AND ColumnName='Electricity'") feature_report.reporting_periods[0].electricity_produced_kwh = convert_units(electricity_produced, 'GJ', 'kWh') ## end_uses # get fuel type as listed in the sql file fueltypes = fuel_types.values # get enduses as listed in the sql file enduses = end_uses.values enduses.delete('Facility') # loop through fuel types and enduses to fill in sql_query method fueltypes.each do |ft| enduses.each do |eu| sql_r = sql_query(runner, sql_file, 'AnnualBuildingUtilityPerformanceSummary', "TableName='End Uses' AND RowName='#{eu}' AND ColumnName='#{ft}'") # report each query in its corresponding feature report object x = ft.tr(' ', '_').downcase if x.include? 'water' x_u = "#{x}_qbft" else x = x.gsub('_#2', '') x_u = "#{x}_kwh" end m = feature_report.reporting_periods[0].end_uses.send(x_u) y = eu.tr(' ', '_').downcase # ensure not nil so the equations below don't error out if sql_r.nil? sql_r = 0.0 end sql_r = convert_units(sql_r, 'GJ', 'kWh') if building.standardsBuildingType.is_initialized && (['Residential'].include?(building.standardsBuildingType.get) && x_u.include?('district')) sql_r = 0.0 end m.send("#{y}=", sql_r) end end # other fuels m = feature_report.reporting_periods[0].end_uses.send('other_fuels_kwh') enduses.each do |eu| y = eu.tr(' ', '_').downcase sql_r = 0.0 other_fuels.each do |ft| sql = sql_query(runner, sql_file, 'AnnualBuildingUtilityPerformanceSummary', "TableName='End Uses' AND RowName='#{eu}' AND ColumnName='#{ft}'") # ensure not nil so the equations below don't error out if !sql.nil? sql_r += convert_units(sql, 'GJ', 'kWh') end end m.send("#{y}=", sql_r) end # add enduses subcategories electric_vehicles = sql_query(runner, sql_file, 'AnnualBuildingUtilityPerformanceSummary', "TableName='End Uses By Subcategory' AND RowName='Exterior Equipment:Electric Vehicles' AND ColumnName='Electricity'") feature_report.reporting_periods[0].end_uses.electricity_kwh.electric_vehicles = convert_units(electric_vehicles, 'GJ', 'kWh') ### energy_production ## electricity_produced # photovoltaic photovoltaic_power = sql_query(runner, sql_file, 'AnnualBuildingUtilityPerformanceSummary', "TableName='Electric Loads Satisfied' AND RowName='Photovoltaic Power' AND ColumnName='Electricity'") feature_report.reporting_periods[0].energy_production_kwh[:electricity_produced][:photovoltaic] = convert_units(photovoltaic_power, 'GJ', 'kWh') ## Total utility cost total_utility_cost = sql_query(runner, sql_file, 'Economics Results Summary Report', "TableName='Annual Cost' AND RowName='Cost' AND ColumnName='Total'") feature_report.reporting_periods[0].total_utility_cost_dollar = total_utility_cost ## Utility Costs # electricity utility cost elec_utility_cost = sql_query(runner, sql_file, 'Economics Results Summary Report', "TableName='Annual Cost' AND RowName='Cost' AND ColumnName='Electric'") feature_report.reporting_periods[0].utility_costs_dollar[0][:fuel_type] = 'Electricity' feature_report.reporting_periods[0].utility_costs_dollar[0][:total_cost] = elec_utility_cost # gas utility cost gas_utility_cost = sql_query(runner, sql_file, 'Economics Results Summary Report', "TableName='Annual Cost' AND RowName='Cost' AND ColumnName='Natural Gas'") feature_report.reporting_periods[0].utility_costs_dollar << { fuel_type: 'Natural Gas', total_cost: gas_utility_cost } ## comfort_result # time_setpoint_not_met_during_occupied_cooling time_setpoint_not_met_during_occupied_cooling = sql_query(runner, sql_file, 'AnnualBuildingUtilityPerformanceSummary', "TableName='Comfort and Setpoint Not Met Summary' AND RowName='Time Setpoint Not Met During Occupied Cooling' AND ColumnName='Facility'") feature_report.reporting_periods[0].comfort_result[:time_setpoint_not_met_during_occupied_cooling] = time_setpoint_not_met_during_occupied_cooling # time_setpoint_not_met_during_occupied_heating time_setpoint_not_met_during_occupied_heating = sql_query(runner, sql_file, 'AnnualBuildingUtilityPerformanceSummary', "TableName='Comfort and Setpoint Not Met Summary' AND RowName='Time Setpoint Not Met During Occupied Heating' AND ColumnName='Facility'") feature_report.reporting_periods[0].comfort_result[:time_setpoint_not_met_during_occupied_heating] = time_setpoint_not_met_during_occupied_heating # time_setpoint_not_met_during_occupied_hour time_setpoint_not_met_during_occupied_hours = time_setpoint_not_met_during_occupied_heating + time_setpoint_not_met_during_occupied_cooling feature_report.reporting_periods[0].comfort_result[:time_setpoint_not_met_during_occupied_hours] = time_setpoint_not_met_during_occupied_hours # electricity emissions begin # future_annual_emissions future_annual_emissions_ts = sql_file.timeSeries(ann_env_pd.to_s, reporting_frequency.to_s, 'Future_Annual_Electricity_Emissions', 'EMS') feature_report.reporting_periods[0].emissions[:future_annual_electricity_emissions_mt] = future_annual_emissions_ts.get.values.sum # future_hourly_emissions future_hourly_emissions_ts = sql_file.timeSeries(ann_env_pd.to_s, reporting_frequency.to_s, 'Future_Hourly_Electricity_Emissions', 'EMS') feature_report.reporting_periods[0].emissions[:future_hourly_electricity_emissions_mt] = future_hourly_emissions_ts.get.values.sum # historical_annual_emissions historical_annual_emissions_ts = sql_file.timeSeries(ann_env_pd.to_s, reporting_frequency.to_s, 'Historical_Annual_Electricity_Emissions', 'EMS') feature_report.reporting_periods[0].emissions[:historical_annual_electricity_emissions_mt] = historical_annual_emissions_ts.get.values.sum # historical_hourly_emissions historical_hourly_emissions_ts = sql_file.timeSeries(ann_env_pd.to_s, reporting_frequency.to_s, 'Historical_Hourly_Electricity_Emissions', 'EMS') feature_report.reporting_periods[0].emissions[:historical_hourly_electricity_emissions_mt] = historical_hourly_emissions_ts.get.values.sum # future_annual_emissions_intensity future_annual_emissions_intensity_ts = sql_file.timeSeries(ann_env_pd.to_s, reporting_frequency.to_s, 'Future_Annual_Electricity_Emissions_Intensity', 'EMS') feature_report.reporting_periods[0].emissions[:future_annual_electricity_emissions_intensity_kg_per_ft2] = future_annual_emissions_intensity_ts.get.values.sum # future_hourly_emissions_intensity future_hourly_emissions_intensity_ts = sql_file.timeSeries(ann_env_pd.to_s, reporting_frequency.to_s, 'Future_Hourly_Electricity_Emissions_Intensity', 'EMS') feature_report.reporting_periods[0].emissions[:future_hourly_electricity_emissions_intensity_kg_per_ft2] = future_hourly_emissions_intensity_ts.get.values.sum # historical_annual_emissions_intensity historical_annual_emissions_intensity_ts = sql_file.timeSeries(ann_env_pd.to_s, reporting_frequency.to_s, 'Historical_Annual_Electricity_Emissions_Intensity', 'EMS') feature_report.reporting_periods[0].emissions[:historical_annual_electricity_emissions_intensity_kg_per_ft2] = historical_annual_emissions_intensity_ts.get.values.sum # historical_hourly_emissions_intensity historical_hourly_emissions_intensity_ts = sql_file.timeSeries(ann_env_pd.to_s, reporting_frequency.to_s, 'Historical_Hourly_Electricity_Emissions_Intensity', 'EMS') feature_report.reporting_periods[0].emissions[:historical_hourly_electricity_emissions_intensity_kg_per_ft2] = historical_hourly_emissions_intensity_ts.get.values.sum rescue StandardError @@logger.info('Emissions are not reported for this feature') end # add qaqc results to feature report qaqc_flags_hash = feature_qaqc_flags(runner) feature_report.qaqc_flags.eui_reasonableness = qaqc_flags_hash['eui_reasonableness'] feature_report.qaqc_flags.end_use_by_category = qaqc_flags_hash['end_use_by_category'] feature_report.qaqc_flags.mechanical_system_part_load_efficiency = qaqc_flags_hash['mechanical_system_part_load_efficiency'] feature_report.qaqc_flags.simultaneous_heating_and_cooling = qaqc_flags_hash['simultaneous_heating_and_cooling'] feature_report.qaqc_flags.internal_loads = qaqc_flags_hash['internal_loads'] feature_report.qaqc_flags.schedules = qaqc_flags_hash['schedules'] feature_report.qaqc_flags.envelope_r_value = qaqc_flags_hash['envelope_r_value'] feature_report.qaqc_flags.domestic_hot_water = qaqc_flags_hash['domestic_hot_water'] feature_report.qaqc_flags.mechanical_system_efficiency = qaqc_flags_hash['mechanical_system_efficiency'] feature_report.qaqc_flags.supply_and_zone_air_temperature = qaqc_flags_hash['supply_and_zone_air_temperature'] feature_report.qaqc_flags.total_qaqc_flags = qaqc_flags_hash['total_qaqc_flags'] ########################################################################################################################## # set conversion variables conv_J_mwh = 1000000 * 60 * 60 # J to MWh (1000000J/MJ * 60hr/min * 60 min/sec) conv_kg_mt = 0.001 # kg to metric ton conv_kbtu_J = 1054852.32 # KBtu to J (1kBtu = 1054852.32 J) ##### Emisison factors for natural gas, propane, and fuel oil based on https://portfoliomanager.energystar.gov/pdf/reference/Emissions.pdf ## natural gas : 181.7 KG/MWH ## propane : 219.2 KG/MWH ## Fuel oil #1: 250.8 KG/MWH nat_gas_val = 181.7 lpg_val = 219.2 fo1_val = 250.8 fo2_val = 253.2 ########################################################################################################################## ######################################## Reporting TImeseries Results FOR CSV File ####################################### # timeseries we want to report requested_timeseries_names = [ 'Electricity:Facility', 'ElectricityProduced:Facility', 'NaturalGas:Facility', 'Propane:Facility', 'FuelOilNo2:Facility', 'OtherFuels:Facility', 'Cooling:Electricity', 'Heating:Electricity', 'InteriorLights:Electricity', 'ExteriorLights:Electricity', 'InteriorEquipment:Electricity', 'ExteriorEquipment:Electricity', 'Fans:Electricity', 'Pumps:Electricity', 'WaterSystems:Electricity', 'HeatRejection:Electricity', 'HeatRejection:NaturalGas', 'Heating:NaturalGas', 'WaterSystems:NaturalGas', 'InteriorEquipment:NaturalGas', 'HeatRejection:Propane', 'Heating:Propane', 'WaterSystems:Propane', 'InteriorEquipment:Propane', 'HeatRejection:FuelOilNo2', 'Heating:FuelOilNo2', 'WaterSystems:FuelOilNo2', 'InteriorEquipment:FuelOilNo2', 'HeatRejection:OtherFuels', 'Heating:OtherFuels', 'WaterSystems:OtherFuels', 'InteriorEquipment:OtherFuels', 'DistrictCooling:Facility', 'DistrictHeating:Facility', 'District Cooling Chilled Water Rate', 'District Cooling Mass Flow Rate', 'District Cooling Inlet Temperature', 'District Cooling Outlet Temperature', 'District Heating Hot Water Rate', 'District Heating Mass Flow Rate', 'District Heating Inlet Temperature', 'District Heating Outlet Temperature', 'Cooling Coil Total Cooling Rate', 'Heating Coil Heating Rate', 'Future_Annual_Electricity_Emissions', 'Future_Hourly_Electricity_Emissions', 'Historical_Annual_Electricity_Emissions', 'Historical_Hourly_Electricity_Emissions', 'Future_Annual_Electricity_Emissions_Intensity', 'Future_Hourly_Electricity_Emissions_Intensity', 'Historical_Annual_Electricity_Emissions_Intensity', 'Historical_Hourly_Electricity_Emissions_Intensity', 'Natural_Gas_Emissions', 'Natural_Gas_Emissions_Intensity', 'Propane_Emissions', 'Propane_Emissions_Intensity', 'FuelOilNo2_Emissions', 'FuelOilNo2_Emissions_Intensity', 'Curtailed EV Power', 'Daily EV Charge Energy Capacity', 'EV Charge Ratio', 'Total Charged EV Energy', 'Total Curtailed EV Energy', 'Total Scheduled EV Energy', 'Emission Intensity Schedule Output', 'EV Charging Effective Schedule', 'EV Charging Original Schedule', 'EV Charging Original Load' ] # add thermal comfort timeseries comfortTimeseries = ['Zone Thermal Comfort Fanger Model PMV', 'Zone Thermal Comfort Fanger Model PPD'] requested_timeseries_names += comfortTimeseries # add additional power timeseries (for calculating transformer apparent power to compare to rating ) in VA powerTimeseries = ['Net Electric Energy', 'Electricity:Facility Power', 'ElectricityProduced:Facility Power', 'Electricity:Facility Apparent Power', 'ElectricityProduced:Facility Apparent Power', 'Net Power', 'Net Apparent Power'] requested_timeseries_names += powerTimeseries # add additional thermal storage timeseries tesTimeseries = ['Ice Thermal Storage End Fraction', 'Cooling Coil Ice Thermal Storage End Fraction'] requested_timeseries_names += tesTimeseries # register info all timeseries runner.registerInfo("All timeseries: #{requested_timeseries_names}") # timeseries variables to keep to calculate power tsToKeep = ['Electricity:Facility', 'ElectricityProduced:Facility', 'Propane:Facility', 'NaturalGas:Facility', 'FuelOilNo2:Facility', 'FuelOilNo1:Facility'] tsToKeepIndexes = {} ### powerFactor ### # use power_factor default: 0.9 # TODO: Set powerFactor default based on building type powerFactor = 0.9 ### power_conversion ### # divide values by total_seconds to convert J to W (W = J/sec) # divide values by total_hours to convert kWh to kW (kW = kWh/hrs) total_seconds = (60 / timesteps_per_hour.to_f) * 60 # make sure timesteps_per_hour is a float in the division total_hours = 1 / timesteps_per_hour.to_f # make sure timesteps_per_hour is a float in the division # set power_conversion power_conversion = total_hours # we set the power conversio to total_hours since we want to convert lWh to kW puts "Power Conversion: to convert kWh to kW values will be divided by #{power_conversion}" # number of values in each timeseries n = nil # all numeric timeseries values, transpose of CSV file (e.g. values[key_cnt] is column, values[key_cnt][i] is column and row) values = [] tmpArray = [] # since schedule value will have a bunch of key_values, we need to keep track of these as additional timeseries key_cnt = 0 # this is recording the name of these final timeseries to write in the header of the CSV final_timeseries_names = [] # loop over requested timeseries requested_timeseries_names.each_index do |i| timeseries_name = requested_timeseries_names[i] puts " *********timeseries_name = #{timeseries_name}******************" runner.registerInfo("TIMESERIES: #{timeseries_name}") # get all the key values that this timeseries can be reported for (e.g. if PMV is requested for each zone) if timeseries_name.include?('OtherFuels') key_values = sql_file.availableKeyValues('RUN PERIOD 1', 'Zone Timestep', timeseries_name.upcase) else key_values = sql_file.availableKeyValues('RUN PERIOD 1', 'Zone Timestep', timeseries_name) end runner.registerInfo("KEY VALUES: #{key_values}") if key_values.empty? key_values = [''] end # sort keys sorted_keys = key_values.sort requested_keys = requested_timeseries_names final_keys = [] # make sure aggregated timeseries are listed in sorted order before all individual feature timeseries sorted_keys.each do |k| if requested_keys.include? k final_keys << k end end sorted_keys.each do |k| if !requested_keys.include? k final_keys << k end end # loop over final keys final_keys.each_with_index do |key_value, key_i| new_timeseries_name = '' runner.registerInfo("!! TIMESERIES NAME: #{timeseries_name} AND key_value: #{key_value}") # check if we have to come up with a new name for the timeseries in our CSV header if key_values.size == 1 # use timeseries name when only 1 keyvalue new_timeseries_name = timeseries_name else # use key_value name # special case for Zone Thermal Comfort: use both timeseries_name and key_value if timeseries_name.include? 'Zone Thermal Comfort' new_timeseries_name = "#{timeseries_name} #{key_value}" else new_timeseries_name = key_value end end # final_timeseries_names << new_timeseries_name # get the actual timeseries if timeseries_name.include?('OtherFuels') ts = sql_file.timeSeries(ann_env_pd.to_s, reporting_frequency.to_s, timeseries_name.upcase, key_value) else ts = sql_file.timeSeries(ann_env_pd.to_s, reporting_frequency.to_s, timeseries_name, key_value) end if n.nil? # first timeseries should always be set runner.registerInfo('First timeseries') values[key_cnt] = ts.get.values n = values[key_cnt].size elsif ts.is_initialized runner.registerInfo('Is Initialized') values[key_cnt] = ts.get.values else runner.registerInfo('Is NOT Initialized') values[key_cnt] = Array.new(n, 0) end # residential considerations if building.standardsBuildingType.is_initialized && (['DistrictCooling:Facility', 'DistrictHeating:Facility'].include?(timeseries_name) && ['Residential'].include?(building.standardsBuildingType.get)) values[key_cnt] = Array.new(n, 0) end # unit conversion old_unit = ts.get.units if ts.is_initialized if timeseries_name.include?('NaturalGas') || timeseries_name.include?('Propane') || timeseries_name.include?('FuelOilNo2') || timeseries_name.include?('OtherFuels') new_unit = 'kBtu' else new_unit = case old_unit.to_s when 'J' 'kWh' when 'kBtu' 'kWh' when 'gal' 'm3' when 'W' 'W' when 'kg' 'kg' when 'MT' 'MT' when 'KG/FT2' 'KG/FT2' end end # loop through each value and apply unit conversion os_vec = values[key_cnt] if !timeseries_name.include? 'Zone Thermal Comfort' for i in 0..os_vec.length - 1 unless new_unit == old_unit || old_unit.nil? || new_unit.nil? || !ts.is_initialized os_vec[i] = OpenStudio.convert(os_vec[i], old_unit, new_unit).get end end end # keep certain timeseries to calculate power if tsToKeep.include? timeseries_name tsToKeepIndexes[timeseries_name] = key_cnt end ### add emissions for natural gas, propane and fuel oil # # set conversion variables # conv_J_mwh = 1000000 * 60 * 60 # J to MWh (1000000J/MJ * 60hr/min * 60 min/sec) # conv_kg_mt = 0.001 # kg to metric ton # conv_kbtu_J = 1054852.32 # KBtu to J (1kBtu = 1054852.32 J) # ##### Emisison factors for natural gas, propane, and fuel oil based on https://portfoliomanager.energystar.gov/pdf/reference/Emissions.pdf # ## natural gas : 181.7 KG/MWH # ## propane : 219.2 KG/MWH # nat_gas_val = 181.7 # lpg_val = 219.2 # fo1_val = 250.8 # fo2_val = 253.2 if timeseries_name == 'Natural_Gas_Emissions' newVals = Array.new(n, 0) (0..n - 1).each do |j| newVals[j] = (nat_gas_val * (values[tsToKeepIndexes['NaturalGas:Facility']][j].to_f * conv_kbtu_J.to_f) / conv_J_mwh.to_f) * conv_kg_mt.to_f j += 1 end new_unit = 'MT' values[key_cnt] = newVals # add emissions sum to feature report feature_report.reporting_periods[0].emissions[:natural_gas_emissions_mt] = newVals.sum end if timeseries_name == 'Propane_Emissions' newVals = Array.new(n, 0) (0..n - 1).each do |j| newVals[j] = (lpg_val * (values[tsToKeepIndexes['Propane:Facility']][j].to_f * conv_kbtu_J.to_f) / conv_J_mwh.to_f) * conv_kg_mt.to_f j += 1 end new_unit = 'MT' values[key_cnt] = newVals # add emissions sum to feature report feature_report.reporting_periods[0].emissions[:propane_emissions_mt] = newVals.sum end if timeseries_name == 'FuelOilNo2_Emissions' newVals = Array.new(n, 0) (0..n - 1).each do |j| newVals[j] = (fo2_val * (values[tsToKeepIndexes['FuelOilNo2:Facility']][j].to_f * conv_kbtu_J.to_f) / conv_J_mwh.to_f) * conv_kg_mt.to_f j += 1 end new_unit = 'MT' values[key_cnt] = newVals # add emissions sum to feature report feature_report.reporting_periods[0].emissions[:fueloil_no2_emissions_mt] = newVals.sum end ### calculate emissions intensity metric # get flr_area flr_area = building.floorArea * 10.764 # change from m2 to ft2 if timeseries_name == 'Natural_Gas_Emissions_Intensity' newVals = Array.new(n, 0) (0..n - 1).each do |j| newVals[j] = (((nat_gas_val * (values[tsToKeepIndexes['NaturalGas:Facility']][j].to_f * conv_kbtu_J.to_f) / conv_J_mwh.to_f) * conv_kg_mt.to_f) * 1000 / flr_area) # unit: kg/ft2 - changed mt to kg j += 1 end new_unit = 'KG/FT2' values[key_cnt] = newVals # add emissions sum to feature report feature_report.reporting_periods[0].emissions[:natural_gas_emissions_intensity_kg_per_ft2] = newVals.sum end if timeseries_name == 'Propane_Emissions_Intensity' newVals = Array.new(n, 0) (0..n - 1).each do |j| newVals[j] = (((lpg_val * (values[tsToKeepIndexes['Propane:Facility']][j].to_f * conv_kbtu_J.to_f) / conv_J_mwh.to_f) * conv_kg_mt.to_f) * 1000 / flr_area) # unit: kg/ft2 - changed mt to kg j += 1 end new_unit = 'KG/FT2' values[key_cnt] = newVals # add emissions sum to feature report feature_report.reporting_periods[0].emissions[:propane_emissions_intensity_kg_per_ft2] = newVals.sum end if timeseries_name == 'FuelOilNo2_Emissions_Intensity' newVals = Array.new(n, 0) (0..n - 1).each do |j| newVals[j] = (((fo2_val * (values[tsToKeepIndexes['FuelOilNo2:Facility']][j].to_f * conv_kbtu_J.to_f) / conv_J_mwh.to_f) * conv_kg_mt.to_f) * 1000 / flr_area) # unit: kg/ft2 - changed mt to kg j += 1 end new_unit = 'KG/FT2' values[key_cnt] = newVals # add emissions sum to feature report feature_report.reporting_periods[0].emissions[:fueloil_no2_emissions_intensity_kg_per_ft2] = newVals.sum end # special processing: power if powerTimeseries.include? timeseries_name # special case: net series (subtract generation from load) if timeseries_name.include? 'Net' newVals = Array.new(n, 0) # Apparent power calculation if timeseries_name.include?('Apparent') (0..n - 1).each do |j| newVals[j] = (values[tsToKeepIndexes['Electricity:Facility']][j].to_f - values[tsToKeepIndexes['ElectricityProduced:Facility']][j].to_f) / power_conversion / powerFactor j += 1 end new_unit = 'kVA' elsif timeseries_name.include? 'Net Electric Energy' (0..n - 1).each do |j| newVals[j] = (values[tsToKeepIndexes['Electricity:Facility']][j].to_f - values[tsToKeepIndexes['ElectricityProduced:Facility']][j].to_f) j += 1 end new_unit = 'kWh' else runner.registerInfo('Power calc') # Power calculation (0..n - 1).each do |j| newVals[j] = (values[tsToKeepIndexes['Electricity:Facility']][j].to_f - values[tsToKeepIndexes['ElectricityProduced:Facility']][j].to_f) / power_conversion j += 1 end new_unit = 'kW' end values[key_cnt] = newVals else tsToKeepIndexes.each do |key, indexValue| if timeseries_name.include? key runner.registerInfo("timeseries_name: #{timeseries_name}, key: #{key}") # use this timeseries newVals = Array.new(n, 0) # Apparent power calculation if timeseries_name.include?('Apparent') (0..n - 1).each do |j| newVals[j] = values[indexValue][j].to_f / power_conversion / powerFactor j += 1 end new_unit = 'kVA' else # Power calculation (0..n - 1).each do |j| newVals[j] = values[indexValue][j].to_f / power_conversion j += 1 end new_unit = 'kW' end values[key_cnt] = newVals end end end end # append units to headers new_timeseries_name += "(#{new_unit})" final_timeseries_names << new_timeseries_name # TODO: DELETE PUTS # puts " *********timeseries_name = #{timeseries_name}******************" # if timeseries_name.include? 'Power' # puts "values = #{values[key_cnt]}" # puts "units = #{new_unit}" # end # thermal storage ice end fractions have multiple timeseries, aggregate into a single series with consistent name and use the average value at each timestep if tesTimeseries.include? timeseries_name # set up array if 1st key_value if key_i == 0 runner.registerInfo("SETTING UP NEW ARRAY FOR: #{timeseries_name}") tmpArray = Array.new(n, 1) end # add to array (keep min value at each timestep) (0..(n - 1)).each do |ind| tVal = values[key_cnt][ind].to_f tmpArray[ind] = [tVal, tmpArray[ind]].min end end # comfort results usually have multiple timeseries (per zone), aggregate into a single series with consistent name and use worst value at each timestep if comfortTimeseries.include? timeseries_name # set up array if 1st key_value if key_i == 0 runner.registerInfo("SETTING UP NEW ARRAY FOR: #{timeseries_name}") tmpArray = Array.new(n, 0) end # add to array (keep max value at each timestep) (0..(n - 1)).each do |ind| # process negative and positive values differently tVal = values[key_cnt][ind].to_f if tVal < 0 tmpArray[ind] = [tVal, tmpArray[ind]].min else tmpArray[ind] = [tVal, tmpArray[ind]].max end end # aggregate and save when all keyvalues have been processed if key_i == final_keys.size - 1 hrsOutOfBounds = 0 if timeseries_name === 'Zone Thermal Comfort Fanger Model PMV' (0..(n - 1)).each do |ind| # -0.5 < x < 0.5 is within bounds if values[key_cnt][ind].to_f > 0.5 || values[key_cnt][ind].to_f < -0.5 hrsOutOfBounds += 1 end end hrsOutOfBounds = hrsOutOfBounds.to_f / timesteps_per_hour elsif timeseries_name === 'Zone Thermal Comfort Fanger Model PPD' (0..(n - 1)).each do |ind| # > 20 is outside bounds if values[key_cnt][ind].to_f > 20 hrsOutOfBounds += 1 end end hrsOutOfBounds = hrsOutOfBounds.to_f / timesteps_per_hour else # this one is already scaled by timestep, no need to divide total (0..(n - 1)).each do |ind| hrsOutOfBounds += values[key_cnt][ind].to_f if values[key_cnt][ind].to_f > 0 end end # save variable to feature_reports hash runner.registerInfo("timeseries #{timeseries_name}: hours out of bounds: #{hrsOutOfBounds}") if timeseries_name === 'Zone Thermal Comfort Fanger Model PMV' feature_report.reporting_periods[0].comfort_result[:hours_out_of_comfort_bounds_PMV] = hrsOutOfBounds elsif timeseries_name == 'Zone Thermal Comfort Fanger Model PPD' feature_report.reporting_periods[0].comfort_result[:hours_out_of_comfort_bounds_PPD] = hrsOutOfBounds end end end # increment key_cnt in new_keys loop key_cnt += 1 end end # Add datime column datetimes = [] # check what timeseries is available available_ts = sql_file.availableTimeSeries puts "####### available_ts = #{available_ts}" # get the timeseries for any of available timeseries # RK: code enhancement needed ts_d_e = sql_file.timeSeries(ann_env_pd.to_s, reporting_frequency.to_s, 'Electricity:Facility', '') ts_d_g = sql_file.timeSeries(ann_env_pd.to_s, reporting_frequency.to_s, 'NaturalGas:Facility', '') if ts_d_e.is_initialized timeseries_d = ts_d_e.get elsif ts_d_g.is_initialized timeseries_d = ts_d_g.get else raise 'ELECTRICITY and GAS results are not initiaized' end # get formatted datetimes timeseries_d.dateTimes.each do |datetime| datetimes << format_datetime(datetime.to_s) end # insert datetimes to values values.insert(0, datetimes) # insert datetime header to names final_timeseries_names.insert(0, 'Datetime') runner.registerInfo("new final_timeseries_names size: #{final_timeseries_names.size}") # Save the 'default_feature_reports.csv' file File.open('default_feature_reports.csv', 'w') do |file| file.puts(final_timeseries_names.join(',')) (0...n).each do |l| line = [] values.each_index do |j| line << values[j][l] end file.puts(line.join(',')) end end # puts "values = #{values}" # closing the sql file sql_file.close ############################# Adding timeseries_csv info to json report and saving CSV ################################ # add csv info to feature_report feature_report.timeseries_csv.path = File.join(Dir.pwd, 'default_feature_reports.csv') feature_report.timeseries_csv.first_report_datetime = '0' feature_report.timeseries_csv.column_names = final_timeseries_names ##### Save the 'default_feature_reports.json' file feature_report_hash = feature_report.to_hash File.open('default_feature_reports.json', 'w') do |f| f.puts JSON.pretty_generate(feature_report_hash) # make sure data is written to the disk one way or the other begin f.fsync rescue StandardError f.flush end end # reporting final condition runner.registerFinalCondition('Default Feature Reports generated successfully.') true # end the run method end |
#sql_query(runner, sql, report_name, query) ⇒ Object
sql_query method
240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 |
# File 'lib/measures/default_feature_reports/measure.rb', line 240 def sql_query(runner, sql, report_name, query) val = nil result = sql.execAndReturnFirstDouble("SELECT Value FROM TabularDataWithStrings WHERE ReportName='#{report_name}' AND #{query}") if result.empty? runner.registerWarning("Query failed for #{report_name} and #{query}") else begin val = result.get rescue StandardError val = nil runner.registerWarning('Query result.get failed') end end return val end |