Class: Vectorsearch::Weaviate
Constant Summary
Constants inherited from Base
Base::DEFAULT_COHERE_DIMENSION, Base::DEFAULT_METRIC, Base::DEFAULT_OPENAI_DIMENSION, Base::LLMS
Instance Attribute Summary
Attributes inherited from Base
#client, #index_name, #llm, #llm_api_key
Instance Method Summary collapse
- #add_texts(texts:) ⇒ Object
-
#ask(question:) ⇒ Hash
Ask a question and return the answer.
- #create_default_schema ⇒ Object
-
#initialize(url:, api_key:, index_name:, llm:, llm_api_key:) ⇒ Weaviate
constructor
A new instance of Weaviate.
-
#similarity_search(query:, k: 4) ⇒ Hash
Return documents similar to the query.
-
#similarity_search_by_vector(embedding:, k: 4) ⇒ Hash
Return documents similar to the vector.
Methods inherited from Base
#generate_completion, #generate_embedding, #generate_prompt
Constructor Details
#initialize(url:, api_key:, index_name:, llm:, llm_api_key:) ⇒ Weaviate
Returns a new instance of Weaviate.
7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 |
# File 'lib/vectorsearch/weaviate.rb', line 7 def initialize( url:, api_key:, index_name:, llm:, llm_api_key: ) @client = ::Weaviate::Client.new( url: url, api_key: api_key, model_service: llm, model_service_api_key: llm_api_key ) @index_name = index_name super(llm: llm, llm_api_key: llm_api_key) end |
Instance Method Details
#add_texts(texts:) ⇒ Object
25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 |
# File 'lib/vectorsearch/weaviate.rb', line 25 def add_texts( texts: ) objects = [] texts.each do |text| objects.push({ class_name: index_name, properties: { content: text } }) end client.objects.batch_create( objects: objects ) end |
#ask(question:) ⇒ Hash
Ask a question and return the answer
95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 |
# File 'lib/vectorsearch/weaviate.rb', line 95 def ask( question: ) # Weaviate currently supports the `ask:` parameter only for the OpenAI LLM (with `qna-openai` module enabled). if llm == :openai ask_object = "{ question: \"#{question}\" }" client.query.get( class_name: index_name, ask: ask_object, limit: "1", fields: "_additional { answer { result } }" ) elsif llm == :cohere search_results = similarity_search(query: question) context = search_results.map do |result| result.dig("content").to_s end context = context.join("\n---\n") prompt = generate_prompt(question: question, context: context) generate_completion(prompt: prompt) end end |
#create_default_schema ⇒ Object
43 44 45 46 47 48 49 50 51 52 53 54 |
# File 'lib/vectorsearch/weaviate.rb', line 43 def create_default_schema client.schema.create( class_name: index_name, vectorizer: "text2vec-#{llm.to_s}", properties: [ { dataType: ["text"], name: "content" } ] ) end |
#similarity_search(query:, k: 4) ⇒ Hash
Return documents similar to the query
60 61 62 63 64 65 66 67 68 69 70 71 72 |
# File 'lib/vectorsearch/weaviate.rb', line 60 def similarity_search( query:, k: 4 ) near_text = "{ concepts: [\"#{query}\"] }" client.query.get( class_name: index_name, near_text: near_text, limit: k.to_s, fields: "content _additional { id }" ) end |
#similarity_search_by_vector(embedding:, k: 4) ⇒ Hash
Return documents similar to the vector
78 79 80 81 82 83 84 85 86 87 88 89 90 |
# File 'lib/vectorsearch/weaviate.rb', line 78 def similarity_search_by_vector( embedding:, k: 4 ) near_vector = "{ vector: #{} }" client.query.get( class_name: index_name, near_vector: near_vector, limit: k.to_s, fields: "content recipe_id" ) end |