Module: Zxcvbn::Scoring
- Defined in:
- lib/zxcvbn/scoring.rb
Constant Summary collapse
- BRUTEFORCE_CARDINALITY =
10
- MIN_GUESSES_BEFORE_GROWING_SEQUENCE =
10_000
- MIN_SUBMATCH_GUESSES_SINGLE_CHAR =
10
- MIN_SUBMATCH_GUESSES_MULTI_CHAR =
50
- MAX_VALUE =
2**1024
- MIN_YEAR_SPACE =
20
- REFERENCE_YEAR =
Time.now.year
- KEYBOARD_AVERAGE_DEGREE =
calc_average_degree(ADJACENCY_GRAPHS["qwerty"]).freeze
- KEYPAD_AVERAGE_DEGREE =
slightly different for keypad/mac keypad, but close enough
calc_average_degree(ADJACENCY_GRAPHS["keypad"]).freeze
- KEYBOARD_STARTING_POSITIONS =
ADJACENCY_GRAPHS["qwerty"].size
- KEYPAD_STARTING_POSITIONS =
ADJACENCY_GRAPHS["keypad"].size
- START_UPPER =
/^[A-Z][^A-Z]+$/.freeze
- END_UPPER =
/^[^A-Z]+[A-Z]$/.freeze
- ALL_UPPER =
/^[^a-z]+$/.freeze
- ALL_LOWER =
/^[^A-Z]+$/.freeze
Class Method Summary collapse
- .bruteforce_guesses(match) ⇒ Object
-
.calc_average_degree(graph) ⇒ Object
on qwerty, ‘g’ has degree 6, being adjacent to ‘ftyhbv’.
- .date_guesses(match) ⇒ Object
- .dictionary_guesses(match) ⇒ Object
-
.estimate_guesses(match, password) ⇒ Object
—————————————————————————— guess estimation – one function per match pattern ————————— ——————————————————————————.
-
.factorial(n) ⇒ Object
rubocop:disable Naming/MethodParameterName.
- .l33t_variations(match) ⇒ Object
-
.most_guessable_match_sequence(password, matches, _exclude_additive: false) ⇒ Object
——————————————————————————.
-
.nck(n, k) ⇒ Object
rubocop:disable Naming/MethodParameterName.
- .regex_guesses(match) ⇒ Object
- .repeat_guesses(match) ⇒ Object
- .sequence_guesses(match) ⇒ Object
- .spatial_guesses(match) ⇒ Object
- .uppercase_variations(match) ⇒ Object
Class Method Details
.bruteforce_guesses(match) ⇒ Object
248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 |
# File 'lib/zxcvbn/scoring.rb', line 248 def self.bruteforce_guesses(match) guesses = BRUTEFORCE_CARDINALITY**match["token"].length # trying to match JS behaviour here setting a MAX_VALUE to try to acheieve same values as JS library. guesses = MAX_VALUE if guesses > MAX_VALUE # small detail: make bruteforce matches at minimum one guess bigger than smallest allowed # submatch guesses, such that non-bruteforce submatches over the same [i..j] take precedence. min_guesses = if match["token"].length == 1 MIN_SUBMATCH_GUESSES_SINGLE_CHAR + 1 else MIN_SUBMATCH_GUESSES_MULTI_CHAR + 1 end [guesses, min_guesses].max.to_f end |
.calc_average_degree(graph) ⇒ Object
on qwerty, ‘g’ has degree 6, being adjacent to ‘ftyhbv’. ‘' has degree 1. this calculates the average over all keys.
7 8 9 10 11 12 13 14 |
# File 'lib/zxcvbn/scoring.rb', line 7 def self.calc_average_degree(graph) average = 0 graph.each_value do |neighbors| average += neighbors.count { |n| n }.to_f end average /= graph.size.to_f average end |
.date_guesses(match) ⇒ Object
311 312 313 314 315 316 317 318 319 320 321 |
# File 'lib/zxcvbn/scoring.rb', line 311 def self.date_guesses(match) # base guesses: (year distance from REFERENCE_YEAR) * num_days * num_years year_space = [(match["year"] - REFERENCE_YEAR).abs, MIN_YEAR_SPACE].max guesses = year_space * 365 separator = match["separator"] if !["", nil].include?(separator) # add factor of 4 for separator selection (one of ~4 choices) guesses *= 4 end guesses end |
.dictionary_guesses(match) ⇒ Object
366 367 368 369 370 371 372 |
# File 'lib/zxcvbn/scoring.rb', line 366 def self.dictionary_guesses(match) match["base_guesses"] = match["rank"] # keep these as properties for display purposes match["uppercase_variations"] = uppercase_variations(match) match["l33t_variations"] = l33t_variations(match) reversed_variations = match["reversed"] && 2 || 1 match["base_guesses"] * match["uppercase_variations"] * match["l33t_variations"] * reversed_variations end |
.estimate_guesses(match, password) ⇒ Object
guess estimation – one function per match pattern —————————
218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 |
# File 'lib/zxcvbn/scoring.rb', line 218 def self.estimate_guesses(match, password) if match["guesses"] return match["guesses"] # a match's guess estimate doesn't change. cache it. end min_guesses = 1 if match["token"].length < password.length min_guesses = if match["token"].length == 1 MIN_SUBMATCH_GUESSES_SINGLE_CHAR else MIN_SUBMATCH_GUESSES_MULTI_CHAR end end estimation_functions = { "bruteforce" => method(:bruteforce_guesses), "dictionary" => method(:dictionary_guesses), "spatial" => method(:spatial_guesses), "repeat" => method(:repeat_guesses), "sequence" => method(:sequence_guesses), "regex" => method(:regex_guesses), "date" => method(:date_guesses) } guesses = estimation_functions[match["pattern"]].call(match) match["guesses"] = [guesses, min_guesses].max match["guesses_log10"] = Math.log10(match["guesses"]) match["guesses"] end |
.factorial(n) ⇒ Object
rubocop:disable Naming/MethodParameterName
38 39 40 41 42 43 |
# File 'lib/zxcvbn/scoring.rb', line 38 def self.factorial(n) # rubocop:disable Naming/MethodParameterName # unoptimized, called only on small n return 1 if n < 2 (2..n).reduce(&:*) end |
.l33t_variations(match) ⇒ Object
401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 |
# File 'lib/zxcvbn/scoring.rb', line 401 def self.l33t_variations(match) return 1 if !match["l33t"] variations = 1 match["sub"].each do |subbed, unsubbed| # lower-case match.token before calculating: capitalization shouldn't affect l33t calc. chrs = match["token"].downcase.chars ss = chrs.count { |chr| chr == subbed } uu = chrs.count { |chr| chr == unsubbed } if ss == 0 || uu == 0 # for this sub, password is either fully subbed (444) or fully unsubbed (aaa) # treat that as doubling the space (attacker needs to try fully subbed chars in addition to # unsubbed.) variations *= 2 else # this case is similar to capitalization: # with aa44a, uu = 3, ss = 2, attacker needs to try unsubbed + one sub + two subs p = [uu, ss].min possibilities = 0 (1..p).each do |i| possibilities += nck(uu + ss, i) end variations *= possibilities end end variations end |
.most_guessable_match_sequence(password, matches, _exclude_additive: false) ⇒ Object
77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 |
# File 'lib/zxcvbn/scoring.rb', line 77 def self.most_guessable_match_sequence(password, matches, _exclude_additive: false) n = password.length # partition matches into sublists according to ending index j matches_by_j = (0...n).map { [] } matches.each do |m| matches_by_j[m["j"]] << m end # small detail: for deterministic output, sort each sublist by i. matches_by_j.each do |lst| lst.sort_by! { |m| m["i"] } end optimal = { # optimal.m[k][l] holds final match in the best length-l match sequence covering the # password prefix up to k, inclusive. # if there is no length-l sequence that scores better (fewer guesses) than # a shorter match sequence spanning the same prefix, optimal.m[k][l] is undefined. "m" => (0...n).map { {} }, # same structure as optimal.m -- holds the product term Prod(m.guesses for m in sequence). # optimal.pi allows for fast (non-looping) updates to the minimization function. "pi" => (0...n).map { {} }, # same structure as optimal.m -- holds the overall metric. "g" => (0...n).map { {} } } # helper: considers whether a length-l sequence ending at match m is better (fewer guesses) # than previously encountered sequences, updating state if so. update = lambda do |m, l| k = m["j"] pi = estimate_guesses(m, password) if l > 1 # we're considering a length-l sequence ending with match m: # obtain the product term in the minimization function by multiplying m's guesses # by the product of the length-(l-1) sequence ending just before m, at m.i - 1. pi *= optimal["pi"][m["i"] - 1][l - 1] end # calculate the minimization func g = factorial(l) * pi g += MIN_GUESSES_BEFORE_GROWING_SEQUENCE**(l - 1) if !_exclude_additive # update state if new best. # first see if any competing sequences covering this prefix, with l or fewer matches, # fare better than this sequence. if so, skip it and return. optimal["g"][k].find do |competing_l, competing_g| next if competing_l > l return nil if competing_g <= g end # this sequence might be part of the final optimal sequence. optimal["g"][k][l] = g optimal["m"][k][l] = m optimal["pi"][k][l] = pi optimal["g"][k] = optimal["g"][k].sort.to_h optimal["m"][k] = optimal["m"][k].sort.to_h optimal["pi"][k] = optimal["pi"][k].sort.to_h end # helper: make bruteforce match objects spanning i to j, inclusive. make_bruteforce_match = lambda do |i, j| return { "pattern" => "bruteforce", "token" => password[i..j], "i" => i, "j" => j } end # helper: evaluate bruteforce matches ending at k. bruteforce_update = lambda do |k| # see if a single bruteforce match spanning the k-prefix is optimal. m = make_bruteforce_match.call(0, k) update.call(m, 1) (1..k).each do |i| # generate k bruteforce matches, spanning from (i=1, j=k) up to (i=k, j=k). # see if adding these new matches to any of the sequences in optimal[i-1] # leads to new bests. m = make_bruteforce_match.call(i, k) optimal["m"][i - 1].each do |l, last_m| # corner: an optimal sequence will never have two adjacent bruteforce matches. # it is strictly better to have a single bruteforce match spanning the same region: # same contribution to the guess product with a lower length. # --> safe to skip those cases. next if last_m["pattern"] == "bruteforce" # try adding m to this length-l sequence. update.call(m, l + 1) end end end # helper: step backwards through optimal.m starting at the end, # constructing the final optimal match sequence. unwind = lambda do |n2| optimal_match_sequence = [] k = n2 - 1 # find the final best sequence length and score l, _g = (optimal["g"][k] || []).min_by { |_candidate_l, candidate_g| candidate_g || 0 } while k >= 0 m = optimal["m"][k][l] optimal_match_sequence.unshift(m) k = m["i"] - 1 l -= 1 end return optimal_match_sequence end (0...n).each do |k| matches_by_j[k].each do |m| if m["i"] > 0 optimal["m"][m["i"] - 1].each_key do |l| update.call(m, l + 1) end else update.call(m, 1) end end bruteforce_update.call(k) end optimal_match_sequence = unwind.call(n) optimal_l = optimal_match_sequence.length # corner: empty password guesses = if password.empty? 1 else optimal["g"][n - 1][optimal_l] end # final result object { "password" => password, "guesses" => guesses, "guesses_log10" => Math.log10(guesses), "sequence" => optimal_match_sequence } end |
.nck(n, k) ⇒ Object
rubocop:disable Naming/MethodParameterName
24 25 26 27 28 29 30 31 32 33 34 35 36 |
# File 'lib/zxcvbn/scoring.rb', line 24 def self.nck(n, k) # rubocop:disable Naming/MethodParameterName # http://blog.plover.com/math/choose.html return 0.0 if k > n return 1.0 if k == 0 r = 1.0 (1..k).each do |d| r *= n r /= d n -= 1.0 end r end |
.regex_guesses(match) ⇒ Object
291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 |
# File 'lib/zxcvbn/scoring.rb', line 291 def self.regex_guesses(match) char_class_bases = { "alpha_lower" => 26, "alpha_upper" => 26, "alpha" => 52, "alphanumeric" => 62, "digits" => 10, "symbols" => 33 } if char_class_bases.key? match["regex_name"] char_class_bases[match["regex_name"]]**match["token"].length elsif match["regex_name"] == "recent_year" # conservative estimate of year space: num years from REFERENCE_YEAR. # if year is close to REFERENCE_YEAR, estimate a year space of MIN_YEAR_SPACE. year_space = (match["regex_match"][0].to_i - REFERENCE_YEAR).abs [year_space, MIN_YEAR_SPACE].max end end |
.repeat_guesses(match) ⇒ Object
264 265 266 |
# File 'lib/zxcvbn/scoring.rb', line 264 def self.repeat_guesses(match) match["base_guesses"] * match["repeat_count"] end |
.sequence_guesses(match) ⇒ Object
268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 |
# File 'lib/zxcvbn/scoring.rb', line 268 def self.sequence_guesses(match) first_chr = match["token"][0] # lower guesses for obvious starting points base_guesses = if ["a", "A", "z", "Z", "0", "1", "9"].include?(first_chr) 4 elsif first_chr.match?(/\d/) 10 else # could give a higher base for uppercase, # assigning 26 to both upper and lower sequences is more conservative. 26 end if !match["ascending"] # need to try a descending sequence in addition to every ascending sequence -> # 2x guesses base_guesses *= 2 end base_guesses * match["token"].length end |
.spatial_guesses(match) ⇒ Object
330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 |
# File 'lib/zxcvbn/scoring.rb', line 330 def self.spatial_guesses(match) if ["qwerty", "dvorak"].include?(match["graph"]) s = KEYBOARD_STARTING_POSITIONS d = KEYBOARD_AVERAGE_DEGREE else s = KEYPAD_STARTING_POSITIONS d = KEYPAD_AVERAGE_DEGREE end guesses = 0.0 ll = match["token"].length t = match["turns"] # estimate the number of possible patterns w/ length ll or less with t turns or less. (2..ll).each do |i| possible_turns = [t, i - 1].min (1..possible_turns).each do |j| guesses += nck((i - 1).to_f, (j - 1).to_f) * s.to_f * (d.to_f**j.to_f) end end # add extra guesses for shifted keys. (% instead of 5, A instead of a.) # math is similar to extra guesses of l33t substitutions in dictionary matches. if match["shifted_count"] && match["shifted_count"] != 0 ss = match["shifted_count"] uu = match["token"].length - match["shifted_count"] # unshifted count if ss == 0 || uu == 0 guesses *= 2 else shifted_variations = 0 (1..[ss, uu].min).each do |i| shifted_variations += nck((ss + uu).to_f, i.to_f) end guesses *= shifted_variations end end guesses end |
.uppercase_variations(match) ⇒ Object
379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 |
# File 'lib/zxcvbn/scoring.rb', line 379 def self.uppercase_variations(match) word = match["token"] return 1 if word.match?(ALL_LOWER) || word.downcase == word # a capitalized word is the most common capitalization scheme, # so it only doubles the search space (uncapitalized + capitalized). # allcaps and end-capitalized are common enough too, underestimate as 2x factor to be safe. [START_UPPER, END_UPPER, ALL_UPPER].each do |regex| return 2 if word.match?(regex) end # otherwise calculate the number of ways to capitalize U+L uppercase+lowercase letters # with U uppercase letters or less. or, if there's more uppercase than lower (for eg. PASSwORD), # the number of ways to lowercase U+L letters with L lowercase letters or less. uu = word.chars.count { |chr| chr.match?(/[A-Z]/) } ll = word.chars.count { |chr| chr.match?(/[a-z]/) } variations = 0 (1..[uu, ll].min).each do |i| variations += nck(uu + ll, i) end variations end |