Module: Distribution::Beta::Ruby_
- Extended by:
- Math
- Defined in:
- lib/distribution/beta/ruby.rb
Constant Summary
Constants included from MathExtension
MathExtension::EULER, MathExtension::LN2, MathExtension::LNPI, MathExtension::LOG_FLOAT_MIN, MathExtension::ROOT3_FLOAT_EPSILON, MathExtension::ROOT3_FLOAT_MIN, MathExtension::ROOT4_FLOAT_EPSILON, MathExtension::ROOT4_FLOAT_MIN, MathExtension::ROOT5_FLOAT_EPSILON, MathExtension::ROOT5_FLOAT_MIN, MathExtension::ROOT6_FLOAT_EPSILON, MathExtension::ROOT6_FLOAT_MIN, MathExtension::SQRT2, MathExtension::SQRTPI
Class Method Summary collapse
-
.cdf(x, a, b) ⇒ Object
Gamma cumulative distribution function Translated from GSL-1.9: cdf/beta.c gsl_cdf_beta_P.
-
.pdf(x, a, b) ⇒ Object
Beta distribution probability density function.
-
.quantile(p, a, b, rmin = 0, rmax = 1) ⇒ Object
(also: p_value)
Inverse of the beta distribution function.
Methods included from Math
beta, binomial_coefficient, binomial_coefficient_gamma, combinations, erfc_e, exact_regularized_beta, factorial, fast_factorial, gammp, gammq, incomplete_beta, incomplete_gamma, lbeta, logbeta, loggamma, permutations, regularized_beta, rising_factorial, unnormalized_incomplete_gamma
Methods included from MathExtension
#beta, #binomial_coefficient, #binomial_coefficient_gamma, #binomial_coefficient_multiplicative, #erfc_e, #exact_regularized_beta, #exp_err, #factorial, #fast_factorial, #gammq, #incomplete_beta, #incomplete_gamma, #lbeta, #logbeta, #loggamma, #permutations, #regularized_beta, #rising_factorial, #unnormalized_incomplete_gamma
Class Method Details
.cdf(x, a, b) ⇒ Object
Gamma cumulative distribution function Translated from GSL-1.9: cdf/beta.c gsl_cdf_beta_P
31 32 33 34 35 |
# File 'lib/distribution/beta/ruby.rb', line 31 def cdf(x, a, b) return 0.0 if x <= 0.0 return 1.0 if x >= 1.0 Math::IncompleteBeta.axpy(1.0, 0.0, a, b, x) end |
.pdf(x, a, b) ⇒ Object
Beta distribution probability density function
Adapted from GSL-1.9 (apparently by Knuth originally), found in randist/beta.c
Form: p(x) dx = (Gamma(a + b)/(Gamma(a) Gamma(b))) x^(a-1) (1-x)^(b-1) dx
== References
15 16 17 18 19 20 21 22 23 24 25 26 27 |
# File 'lib/distribution/beta/ruby.rb', line 15 def pdf(x, a, b) return 0 if x < 0 || x > 1 gab = Math.lgamma(a + b).first ga = Math.lgamma(a).first gb = Math.lgamma(b).first if x == 0.0 || x == 1.0 Math.exp(gab - ga - gb) * x**(a - 1) * (1 - x)**(b - 1) else Math.exp(gab - ga - gb + Math.log(x) * (a - 1) + Math::Log.log1p(-x) * (b - 1)) end end |
.quantile(p, a, b, rmin = 0, rmax = 1) ⇒ Object Also known as: p_value
Inverse of the beta distribution function
38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 |
# File 'lib/distribution/beta/ruby.rb', line 38 def quantile(p, a, b, rmin = 0, rmax = 1) fail 'a <= 0' if a <= 0 fail 'b <= 0' if b <= 0 fail 'rmin == rmax' if rmin == rmax fail 'p <= 0' if p <= 0 fail 'p > 1' if p > 1 precision = 8.88e-016 max_iterations = 256 ga = 0 gb = 2 i = 1 while ((gb - ga) > precision) && (i < max_iterations) guess = (ga + gb) / 2.0 result = cdf(guess, a, b) if (result == p) || (result == 0) gb = ga elsif result > p gb = guess else ga = guess end fail 'No value' if i == max_iterations i += 1 end rmin + guess * (rmax - rmin) end |