Class: BigDecimal
- Inherits:
-
Numeric
- Object
- Numeric
- BigDecimal
- Defined in:
- bigdecimal.c,
lib/bigdecimal/util.rb
Constant Summary collapse
- BASE =
Base value used in internal calculations. On a 32 bit system, BASE is 10000, indicating that calculation is done in groups of 4 digits. (If it were larger, BASE**2 wouldn't fit in 32 bits, so you couldn't guarantee that two groups could always be multiplied together without overflow.)
INT2FIX((S_INT)VpBaseVal())
- EXCEPTION_ALL =
Determines whether overflow, underflow or zero divide result in an exception being thrown. See BigDecimal.mode.
INT2FIX(VP_EXCEPTION_ALL)
- EXCEPTION_NaN =
Determines what happens when the result of a computation is not a number (NaN). See BigDecimal.mode.
INT2FIX(VP_EXCEPTION_NaN)
- EXCEPTION_INFINITY =
Determines what happens when the result of a computation is infinity. See BigDecimal.mode.
INT2FIX(VP_EXCEPTION_INFINITY)
- EXCEPTION_UNDERFLOW =
Determines what happens when the result of a computation is an underflow (a result too small to be represented). See BigDecimal.mode.
INT2FIX(VP_EXCEPTION_UNDERFLOW)
- EXCEPTION_OVERFLOW =
Determines what happens when the result of a computation is an underflow (a result too large to be represented). See BigDecimal.mode.
INT2FIX(VP_EXCEPTION_OVERFLOW)
- EXCEPTION_ZERODIVIDE =
Determines what happens when a division by zero is performed. See BigDecimal.mode.
INT2FIX(VP_EXCEPTION_ZERODIVIDE)
- ROUND_MODE =
Determines what happens when a result must be rounded in order to fit in the appropriate number of significant digits. See BigDecimal.mode.
INT2FIX(VP_ROUND_MODE)
- ROUND_UP =
Indicates that values should be rounded away from zero. See BigDecimal.mode.
INT2FIX(VP_ROUND_UP)
- ROUND_DOWN =
Indicates that values should be rounded towards zero. See BigDecimal.mode.
INT2FIX(VP_ROUND_DOWN)
- ROUND_HALF_UP =
Indicates that digits >= 5 should be rounded up, others rounded down. See BigDecimal.mode.
INT2FIX(VP_ROUND_HALF_UP)
- ROUND_HALF_DOWN =
Indicates that digits >= 6 should be rounded up, others rounded down. See BigDecimal.mode.
INT2FIX(VP_ROUND_HALF_DOWN)
- ROUND_CEILING =
Round towards +infinity. See BigDecimal.mode.
INT2FIX(VP_ROUND_CEIL)
- ROUND_FLOOR =
Round towards -infinity. See BigDecimal.mode.
INT2FIX(VP_ROUND_FLOOR)
- ROUND_HALF_EVEN =
Round towards the even neighbor. See BigDecimal.mode.
INT2FIX(VP_ROUND_HALF_EVEN)
- SIGN_NaN =
Indicates that a value is not a number. See BigDecimal.sign.
INT2FIX(VP_SIGN_NaN)
- SIGN_POSITIVE_ZERO =
Indicates that a value is +0. See BigDecimal.sign.
INT2FIX(VP_SIGN_POSITIVE_ZERO)
- SIGN_NEGATIVE_ZERO =
Indicates that a value is -0. See BigDecimal.sign.
INT2FIX(VP_SIGN_NEGATIVE_ZERO)
- SIGN_POSITIVE_FINITE =
Indicates that a value is positive and finite. See BigDecimal.sign.
INT2FIX(VP_SIGN_POSITIVE_FINITE)
- SIGN_NEGATIVE_FINITE =
Indicates that a value is negative and finite. See BigDecimal.sign.
INT2FIX(VP_SIGN_NEGATIVE_FINITE)
- SIGN_POSITIVE_INFINITE =
Indicates that a value is positive and infinite. See BigDecimal.sign.
INT2FIX(VP_SIGN_POSITIVE_INFINITE)
- SIGN_NEGATIVE_INFINITE =
Indicates that a value is negative and infinite. See BigDecimal.sign.
INT2FIX(VP_SIGN_NEGATIVE_INFINITE)
Class Method Summary collapse
-
._load ⇒ Object
Internal method used to provide marshalling support.
-
.double_fig ⇒ Object
BigDecimal.double_fig.
- .induced_from ⇒ Object
-
.limit ⇒ Object
BigDecimal.limit(digits).
-
.mode ⇒ Object
BigDecimal.mode(mode, value).
-
.new ⇒ Object
new(initial, digits).
-
.ver ⇒ Object
Returns the BigDecimal version number.
Instance Method Summary collapse
-
#% ⇒ Object
a % b a.modulo(b).
-
#* ⇒ Object
mult(value, digits).
-
#** ⇒ Object
power(n).
-
#+ ⇒ Object
add(value, digits).
- #+@ ⇒ Object
-
#- ⇒ Object
sub(value, digits).
- #-@ ⇒ Object
-
#/ ⇒ Object
div(value, digits) quo(value).
-
#< ⇒ Object
a < b.
-
#<= ⇒ Object
a <= b.
-
#<=> ⇒ Object
The comparison operator.
-
#== ⇒ Object
Tests for value equality; returns true if the values are equal.
-
#=== ⇒ Object
Tests for value equality; returns true if the values are equal.
-
#> ⇒ Object
a > b.
-
#>= ⇒ Object
a >= b.
- #_dump ⇒ Object
-
#abs ⇒ Object
Returns the absolute value.
- #add ⇒ Object
-
#ceil ⇒ Object
ceil(n).
-
#coerce ⇒ Object
The coerce method provides support for Ruby type coercion.
- #div ⇒ Object
-
#divmod ⇒ Object
Divides by the specified value, and returns the quotient and modulus as BigDecimal numbers.
- #dup ⇒ Object
-
#eql? ⇒ Object
Tests for value equality; returns true if the values are equal.
-
#exponent ⇒ Object
Returns the exponent of the BigDecimal number, as an Integer.
-
#finite? ⇒ Object
Returns True if the value is finite (not NaN or infinite).
-
#fix ⇒ Object
Return the integer part of the number.
-
#floor ⇒ Object
floor(n).
-
#frac ⇒ Object
Return the fractional part of the number.
- #hash ⇒ Object
-
#infinite? ⇒ Object
Returns True if the value is infinite.
-
#inspect ⇒ Object
Returns debugging information about the value as a string of comma-separated values in angle brackets with a leading #:.
-
#modulo ⇒ Object
a % b a.modulo(b).
- #mult ⇒ Object
-
#nan? ⇒ Object
Returns True if the value is Not a Number.
-
#nonzero? ⇒ Object
Returns True if the value is non-zero.
-
#power ⇒ Object
power(n).
-
#precs ⇒ Object
precs.
-
#quo ⇒ Object
div(value, digits) quo(value).
-
#remainder ⇒ Object
Returns the remainder from dividing by the value.
-
#round ⇒ Object
round(n,mode).
-
#sign ⇒ Object
Returns the sign of the value.
-
#split ⇒ Object
Splits a BigDecimal number into four parts, returned as an array of values.
-
#sqrt ⇒ Object
sqrt(n).
- #sub ⇒ Object
-
#to_digits ⇒ Object
Converts a BigDecimal to a String of the form "nnnnnn.mmm".
-
#to_f ⇒ Object
Returns a new Float object having approximately the same value as the BigDecimal number.
-
#to_i ⇒ Object
Returns the value as an integer (Fixnum or Bignum).
-
#to_int ⇒ Object
Returns the value as an integer (Fixnum or Bignum).
-
#to_r ⇒ Object
Converts a BigDecimal to a Rational.
-
#to_s ⇒ Object
to_s(s).
-
#truncate ⇒ Object
truncate(n).
-
#zero? ⇒ Object
Returns True if the value is zero.
Class Method Details
._load ⇒ Object
Internal method used to provide marshalling support. See the Marshal module.
|
# File 'bigdecimal.c'
/*
* Internal method used to provide marshalling support. See the Marshal module.
*/
static VALUE
BigDecimal_load(VALUE self, VALUE str)
{
ENTER(2);
Real *pv;
unsigned char *pch;
unsigned char ch;
unsigned long m=0;
SafeStringValue(str);
pch = (unsigned char *)RSTRING_PTR(str);
/* First get max prec */
while((*pch)!=(unsigned char)'\0' && (ch=*pch++)!=(unsigned char)':') {
if(!ISDIGIT(ch)) {
rb_raise(rb_eTypeError, "load failed: invalid character in the marshaled string");
}
m = m*10 + (unsigned long)(ch-'0');
}
if(m>VpBaseFig()) m -= VpBaseFig();
GUARD_OBJ(pv,VpNewRbClass(m,(char *)pch,self));
m /= VpBaseFig();
if(m && pv->MaxPrec>m) pv->MaxPrec = m+1;
return ToValue(pv);
}
|
.double_fig ⇒ Object
BigDecimal.double_fig
The BigDecimal.double_fig class method returns the number of digits a Float number is allowed to have. The result depends upon the CPU and OS in use.
|
# File 'bigdecimal.c'
/* call-seq:
* BigDecimal.double_fig
*
* The BigDecimal.double_fig class method returns the number of digits a
* Float number is allowed to have. The result depends upon the CPU and OS
* in use.
*/
static VALUE
BigDecimal_double_fig(VALUE self)
{
return INT2FIX(VpDblFig());
}
|
.induced_from ⇒ Object
.limit ⇒ Object
BigDecimal.limit(digits)
Limit the number of significant digits in newly created BigDecimal numbers to the specified value. Rounding is performed as necessary, as specified by BigDecimal.mode.
A limit of 0, the default, means no upper limit.
The limit specified by this method takes priority over any limit specified to instance methods such as ceil, floor, truncate, or round.
|
# File 'bigdecimal.c'
/* call-seq:
* BigDecimal.limit(digits)
*
* Limit the number of significant digits in newly created BigDecimal
* numbers to the specified value. Rounding is performed as necessary,
* as specified by BigDecimal.mode.
*
* A limit of 0, the default, means no upper limit.
*
* The limit specified by this method takes priority over any limit
* specified to instance methods such as ceil, floor, truncate, or round.
*/
static VALUE
BigDecimal_limit(int argc, VALUE *argv, VALUE self)
{
VALUE nFig;
VALUE nCur = INT2NUM(VpGetPrecLimit());
if(rb_scan_args(argc,argv,"01",&nFig)==1) {
int nf;
if(nFig==Qnil) return nCur;
Check_Type(nFig, T_FIXNUM);
nf = FIX2INT(nFig);
if(nf<0) {
rb_raise(rb_eArgError, "argument must be positive");
}
VpSetPrecLimit(nf);
}
return nCur;
}
|
.mode ⇒ Object
BigDecimal.mode(mode, value)
Controls handling of arithmetic exceptions and rounding. If no value is supplied, the current value is returned.
Six values of the mode parameter control the handling of arithmetic exceptions:
BigDecimal::EXCEPTION_NaN BigDecimal::EXCEPTION_INFINITY BigDecimal::EXCEPTION_UNDERFLOW BigDecimal::EXCEPTION_OVERFLOW BigDecimal::EXCEPTION_ZERODIVIDE BigDecimal::EXCEPTION_ALL
For each mode parameter above, if the value set is false, computation continues after an arithmetic exception of the appropriate type. When computation continues, results are as follows:
- EXCEPTION_NaN
-
NaN
- EXCEPTION_INFINITY
-
+infinity or -infinity
- EXCEPTION_UNDERFLOW
-
0
- EXCEPTION_OVERFLOW
-
+infinity or -infinity
- EXCEPTION_ZERODIVIDE
-
+infinity or -infinity
One value of the mode parameter controls the rounding of numeric values: BigDecimal::ROUND_MODE. The values it can take are:
- ROUND_UP
-
round away from zero
- ROUND_DOWN
-
round towards zero (truncate)
- ROUND_HALF_UP
-
round up if the appropriate digit >= 5, otherwise truncate (default)
- ROUND_HALF_DOWN
-
round up if the appropriate digit >= 6, otherwise truncate
- ROUND_HALF_EVEN
-
round towards the even neighbor (Banker's rounding)
- ROUND_CEILING
-
round towards positive infinity (ceil)
- ROUND_FLOOR
-
round towards negative infinity (floor)
|
# File 'bigdecimal.c'
/* call-seq:
* BigDecimal.mode(mode, value)
*
* Controls handling of arithmetic exceptions and rounding. If no value
* is supplied, the current value is returned.
*
* Six values of the mode parameter control the handling of arithmetic
* exceptions:
*
* BigDecimal::EXCEPTION_NaN
* BigDecimal::EXCEPTION_INFINITY
* BigDecimal::EXCEPTION_UNDERFLOW
* BigDecimal::EXCEPTION_OVERFLOW
* BigDecimal::EXCEPTION_ZERODIVIDE
* BigDecimal::EXCEPTION_ALL
*
* For each mode parameter above, if the value set is false, computation
* continues after an arithmetic exception of the appropriate type.
* When computation continues, results are as follows:
*
* EXCEPTION_NaN:: NaN
* EXCEPTION_INFINITY:: +infinity or -infinity
* EXCEPTION_UNDERFLOW:: 0
* EXCEPTION_OVERFLOW:: +infinity or -infinity
* EXCEPTION_ZERODIVIDE:: +infinity or -infinity
*
* One value of the mode parameter controls the rounding of numeric values:
* BigDecimal::ROUND_MODE. The values it can take are:
*
* ROUND_UP:: round away from zero
* ROUND_DOWN:: round towards zero (truncate)
* ROUND_HALF_UP:: round up if the appropriate digit >= 5, otherwise truncate (default)
* ROUND_HALF_DOWN:: round up if the appropriate digit >= 6, otherwise truncate
* ROUND_HALF_EVEN:: round towards the even neighbor (Banker's rounding)
* ROUND_CEILING:: round towards positive infinity (ceil)
* ROUND_FLOOR:: round towards negative infinity (floor)
*
*/
static VALUE
BigDecimal_mode(int argc, VALUE *argv, VALUE self)
{
VALUE which;
VALUE val;
unsigned long f,fo;
if(rb_scan_args(argc,argv,"11",&which,&val)==1) val = Qnil;
Check_Type(which, T_FIXNUM);
f = (unsigned long)FIX2INT(which);
if(f&VP_EXCEPTION_ALL) {
/* Exception mode setting */
fo = VpGetException();
if(val==Qnil) return INT2FIX(fo);
if(val!=Qfalse && val!=Qtrue) {
rb_raise(rb_eTypeError, "second argument must be true or false");
return Qnil; /* Not reached */
}
if(f&VP_EXCEPTION_INFINITY) {
VpSetException((unsigned short)((val==Qtrue)?(fo|VP_EXCEPTION_INFINITY):
(fo&(~VP_EXCEPTION_INFINITY))));
}
if(f&VP_EXCEPTION_NaN) {
VpSetException((unsigned short)((val==Qtrue)?(fo|VP_EXCEPTION_NaN):
(fo&(~VP_EXCEPTION_NaN))));
}
fo = VpGetException();
return INT2FIX(fo);
}
if(VP_ROUND_MODE==f) {
/* Rounding mode setting */
fo = VpGetRoundMode();
if(val==Qnil) return INT2FIX(fo);
Check_Type(val, T_FIXNUM);
if(!VpIsRoundMode(FIX2INT(val))) {
rb_raise(rb_eTypeError, "invalid rounding mode");
return Qnil;
}
fo = VpSetRoundMode((unsigned long)FIX2INT(val));
return INT2FIX(fo);
}
rb_raise(rb_eTypeError, "first argument for BigDecimal#mode invalid");
return Qnil;
}
|
.new ⇒ Object
new(initial, digits)
Create a new BigDecimal object.
- initial
-
The initial value, as a String. Spaces are ignored, unrecognized characters terminate the value.
- digits
-
The number of significant digits, as a Fixnum. If omitted or 0, the number of significant digits is determined from the initial value.
The actual number of significant digits used in computation is usually larger than the specified number.
|
# File 'bigdecimal.c'
/* call-seq:
* new(initial, digits)
*
* Create a new BigDecimal object.
*
* initial:: The initial value, as a String. Spaces are ignored, unrecognized characters terminate the value.
*
* digits:: The number of significant digits, as a Fixnum. If omitted or 0, the number of significant digits is determined from the initial value.
*
* The actual number of significant digits used in computation is usually
* larger than the specified number.
*/
static VALUE
BigDecimal_new(int argc, VALUE *argv, VALUE self)
{
ENTER(5);
Real *pv;
S_LONG mf;
VALUE nFig;
VALUE iniValue;
if(rb_scan_args(argc,argv,"11",&iniValue,&nFig)==1) {
mf = 0;
} else {
mf = GetPositiveInt(nFig);
}
SafeStringValue(iniValue);
GUARD_OBJ(pv,VpNewRbClass(mf, RSTRING_PTR(iniValue),self));
return ToValue(pv);
}
|
.ver ⇒ Object
Returns the BigDecimal version number.
Ruby 1.8.0 returns 1.0.0. Ruby 1.8.1 thru 1.8.3 return 1.0.1.
|
# File 'bigdecimal.c'
/*
* Returns the BigDecimal version number.
*
* Ruby 1.8.0 returns 1.0.0.
* Ruby 1.8.1 thru 1.8.3 return 1.0.1.
*/
static VALUE
BigDecimal_version(VALUE self)
{
/*
* 1.0.0: Ruby 1.8.0
* 1.0.1: Ruby 1.8.1
*/
return rb_str_new2("1.0.1");
}
|
Instance Method Details
#% ⇒ Object
a % b a.modulo(b)
Returns the modulus from dividing by b. See divmod.
|
# File 'bigdecimal.c'
/* call-seq:
* a % b
* a.modulo(b)
*
* Returns the modulus from dividing by b. See divmod.
*/
static VALUE
BigDecimal_mod(VALUE self, VALUE r)
|
#* ⇒ Object
mult(value, digits)
Multiply by the specified value.
e.g.
c = a.mult(b,n)
c = a * b
- digits
-
If specified and less than the number of significant digits of the result, the result is rounded to that number of digits, according to BigDecimal.mode.
|
# File 'bigdecimal.c'
/* call-seq:
* mult(value, digits)
*
* Multiply by the specified value.
*
* e.g.
* c = a.mult(b,n)
* c = a * b
*
* digits:: If specified and less than the number of significant digits of the result, the result is rounded to that number of digits, according to BigDecimal.mode.
*/
static VALUE
BigDecimal_mult(VALUE self, VALUE r)
{
ENTER(5);
Real *c, *a, *b;
U_LONG mx;
GUARD_OBJ(a,GetVpValue(self,1));
b = GetVpValue(r,0);
if(!b) return DoSomeOne(self,r);
SAVE(b);
mx = a->Prec + b->Prec;
GUARD_OBJ(c,VpCreateRbObject(mx *(VpBaseFig() + 1), "0"));
VpMult(c, a, b);
return ToValue(c);
}
|
#** ⇒ Object
power(n)
Returns the value raised to the power of n. Note that n must be an Integer.
Also available as the operator **
|
# File 'bigdecimal.c'
/* call-seq:
* power(n)
*
* Returns the value raised to the power of n. Note that n must be an Integer.
*
* Also available as the operator **
*/
static VALUE
BigDecimal_power(VALUE self, VALUE p)
{
ENTER(5);
Real *x, *y;
S_LONG mp, ma, n;
Check_Type(p, T_FIXNUM);
n = FIX2INT(p);
ma = n;
if(ma < 0) ma = -ma;
if(ma == 0) ma = 1;
GUARD_OBJ(x,GetVpValue(self,1));
if(VpIsDef(x)) {
mp = x->Prec *(VpBaseFig() + 1);
GUARD_OBJ(y,VpCreateRbObject(mp *(ma + 1), "0"));
} else {
GUARD_OBJ(y,VpCreateRbObject(1, "0"));
}
VpPower(y, x, n);
return ToValue(y);
}
|
#+ ⇒ Object
add(value, digits)
Add the specified value.
e.g.
c = a.add(b,n)
c = a + b
- digits
-
If specified and less than the number of significant digits of the result, the result is rounded to that number of digits, according to BigDecimal.mode.
|
# File 'bigdecimal.c'
/* call-seq:
* add(value, digits)
*
* Add the specified value.
*
* e.g.
* c = a.add(b,n)
* c = a + b
*
* digits:: If specified and less than the number of significant digits of the result, the result is rounded to that number of digits, according to BigDecimal.mode.
*/
static VALUE
BigDecimal_add(VALUE self, VALUE r)
{
ENTER(5);
Real *c, *a, *b;
U_LONG mx;
GUARD_OBJ(a,GetVpValue(self,1));
b = GetVpValue(r,0);
if(!b) return DoSomeOne(self,r);
SAVE(b);
if(VpIsNaN(b)) return b->obj;
if(VpIsNaN(a)) return a->obj;
mx = GetAddSubPrec(a,b);
if(mx==(-1L)) {
GUARD_OBJ(c,VpCreateRbObject(VpBaseFig() + 1, "0"));
VpAddSub(c, a, b, 1);
} else {
GUARD_OBJ(c,VpCreateRbObject(mx *(VpBaseFig() + 1), "0"));
if(!mx) {
VpSetInf(c,VpGetSign(a));
} else {
VpAddSub(c, a, b, 1);
}
}
return ToValue(c);
}
|
#+@ ⇒ Object
#- ⇒ Object
sub(value, digits)
Subtract the specified value.
e.g.
c = a.sub(b,n)
c = a - b
- digits
-
If specified and less than the number of significant digits of the result, the result is rounded to that number of digits, according to BigDecimal.mode.
|
# File 'bigdecimal.c'
/* call-seq:
* sub(value, digits)
*
* Subtract the specified value.
*
* e.g.
* c = a.sub(b,n)
* c = a - b
*
* digits:: If specified and less than the number of significant digits of the result, the result is rounded to that number of digits, according to BigDecimal.mode.
*/
static VALUE
BigDecimal_sub(VALUE self, VALUE r)
{
ENTER(5);
Real *c, *a, *b;
U_LONG mx;
GUARD_OBJ(a,GetVpValue(self,1));
b = GetVpValue(r,0);
if(!b) return DoSomeOne(self,r);
SAVE(b);
if(VpIsNaN(b)) return b->obj;
if(VpIsNaN(a)) return a->obj;
mx = GetAddSubPrec(a,b);
if(mx==(-1L)) {
GUARD_OBJ(c,VpCreateRbObject(VpBaseFig() + 1, "0"));
VpAddSub(c, a, b, -1);
} else {
GUARD_OBJ(c,VpCreateRbObject(mx *(VpBaseFig() + 1), "0"));
if(!mx) {
VpSetInf(c,VpGetSign(a));
} else {
VpAddSub(c, a, b, -1);
}
}
return ToValue(c);
}
|
#-@ ⇒ Object
#/ ⇒ Object
div(value, digits) quo(value)
Divide by the specified value.
e.g.
c = a.div(b,n)
- digits
-
If specified and less than the number of significant digits of the result, the result is rounded to that number of digits, according to BigDecimal.mode.
If digits is 0, the result is the same as the / operator. If not, the result is an integer BigDecimal, by analogy with Float#div.
The alias quo is provided since div(value, 0) is the same as computing the quotient; see divmod.
|
# File 'bigdecimal.c'
/* call-seq:
* div(value, digits)
* quo(value)
*
* Divide by the specified value.
*
* e.g.
* c = a.div(b,n)
*
* digits:: If specified and less than the number of significant digits of the result, the result is rounded to that number of digits, according to BigDecimal.mode.
*
* If digits is 0, the result is the same as the / operator. If not, the
* result is an integer BigDecimal, by analogy with Float#div.
*
* The alias quo is provided since div(value, 0) is the same as computing
* the quotient; see divmod.
*/
static VALUE
BigDecimal_div(VALUE self, VALUE r)
/* For c = self/r: with round operation */
{
ENTER(5);
Real *c=NULL, *res=NULL, *div = NULL;
r = BigDecimal_divide(&c, &res, &div, self, r);
if(r!=(VALUE)0) return r; /* coerced by other */
SAVE(c);SAVE(res);SAVE(div);
/* a/b = c + r/b */
/* c xxxxx
r 00000yyyyy ==> (y/b)*BASE >= HALF_BASE
*/
/* Round */
if(VpHasVal(div)) { /* frac[0] must be zero for NaN,INF,Zero */
VpInternalRound(c,0,c->frac[c->Prec-1],(VpBaseVal()*res->frac[0])/div->frac[0]);
}
return ToValue(c);
}
|
#< ⇒ Object
a < b
Returns true if a is less than b. Values may be coerced to perform the comparison (see ==, coerce).
|
# File 'bigdecimal.c'
/* call-seq:
* a < b
*
* Returns true if a is less than b. Values may be coerced to perform the
* comparison (see ==, coerce).
*/
static VALUE
BigDecimal_lt(VALUE self, VALUE r)
{
return BigDecimalCmp(self, r, '<');
}
|
#<= ⇒ Object
a <= b
Returns true if a is less than or equal to b. Values may be coerced to perform the comparison (see ==, coerce).
|
# File 'bigdecimal.c'
/* call-seq:
* a <= b
*
* Returns true if a is less than or equal to b. Values may be coerced to
* perform the comparison (see ==, coerce).
*/
static VALUE
BigDecimal_le(VALUE self, VALUE r)
{
return BigDecimalCmp(self, r, 'L');
}
|
#<=> ⇒ Object
The comparison operator. a <=> b is 0 if a == b, 1 if a > b, -1 if a < b.
|
# File 'bigdecimal.c'
/* The comparison operator.
* a <=> b is 0 if a == b, 1 if a > b, -1 if a < b.
*/
static VALUE
BigDecimal_comp(VALUE self, VALUE r)
{
return BigDecimalCmp(self, r, '*');
}
|
#== ⇒ Object
Tests for value equality; returns true if the values are equal.
The == and === operators and the eql? method have the same implementation for BigDecimal.
Values may be coerced to perform the comparison:
BigDecimal.new('1.0') == 1.0 -> true
|
# File 'bigdecimal.c'
/*
* Tests for value equality; returns true if the values are equal.
*
* The == and === operators and the eql? method have the same implementation
* for BigDecimal.
*
* Values may be coerced to perform the comparison:
*
* BigDecimal.new('1.0') == 1.0 -> true
*/
static VALUE
BigDecimal_eq(VALUE self, VALUE r)
{
return BigDecimalCmp(self, r, '=');
}
|
#=== ⇒ Object
Tests for value equality; returns true if the values are equal.
The == and === operators and the eql? method have the same implementation for BigDecimal.
Values may be coerced to perform the comparison:
BigDecimal.new('1.0') == 1.0 -> true
|
# File 'bigdecimal.c'
/*
* Tests for value equality; returns true if the values are equal.
*
* The == and === operators and the eql? method have the same implementation
* for BigDecimal.
*
* Values may be coerced to perform the comparison:
*
* BigDecimal.new('1.0') == 1.0 -> true
*/
static VALUE
BigDecimal_eq(VALUE self, VALUE r)
{
return BigDecimalCmp(self, r, '=');
}
|
#> ⇒ Object
a > b
Returns true if a is greater than b. Values may be coerced to perform the comparison (see ==, coerce).
|
# File 'bigdecimal.c'
/* call-seq:
* a > b
*
* Returns true if a is greater than b. Values may be coerced to
* perform the comparison (see ==, coerce).
*/
static VALUE
BigDecimal_gt(VALUE self, VALUE r)
{
return BigDecimalCmp(self, r, '>');
}
|
#>= ⇒ Object
a >= b
Returns true if a is greater than or equal to b. Values may be coerced to perform the comparison (see ==, coerce)
|
# File 'bigdecimal.c'
/* call-seq:
* a >= b
*
* Returns true if a is greater than or equal to b. Values may be coerced to
* perform the comparison (see ==, coerce)
*/
static VALUE
BigDecimal_ge(VALUE self, VALUE r)
{
return BigDecimalCmp(self, r, 'G');
}
|
#_dump ⇒ Object
#abs ⇒ Object
Returns the absolute value.
BigDecimal('5').abs -> 5
BigDecimal('-3').abs -> 3
|
# File 'bigdecimal.c'
/* Returns the absolute value.
*
* BigDecimal('5').abs -> 5
*
* BigDecimal('-3').abs -> 3
*/
static VALUE
BigDecimal_abs(VALUE self)
{
ENTER(5);
Real *c, *a;
U_LONG mx;
GUARD_OBJ(a,GetVpValue(self,1));
mx = a->Prec *(VpBaseFig() + 1);
GUARD_OBJ(c,VpCreateRbObject(mx, "0"));
VpAsgn(c, a, 1);
VpChangeSign(c,(S_INT)1);
return ToValue(c);
}
|
#add ⇒ Object
#ceil ⇒ Object
ceil(n)
Return the smallest integer greater than or equal to the value, as a BigDecimal.
BigDecimal('3.14159').ceil -> 4
BigDecimal('-9.1').ceil -> -9
If n is specified and positive, the fractional part of the result has no more than that many digits.
If n is specified and negative, at least that many digits to the left of the decimal point will be 0 in the result.
BigDecimal('3.14159').ceil(3) -> 3.142
BigDecimal('13345.234').ceil(-2) -> 13400.0
|
# File 'bigdecimal.c'
/* call-seq:
* ceil(n)
*
* Return the smallest integer greater than or equal to the value, as a BigDecimal.
*
* BigDecimal('3.14159').ceil -> 4
*
* BigDecimal('-9.1').ceil -> -9
*
* If n is specified and positive, the fractional part of the result has no
* more than that many digits.
*
* If n is specified and negative, at least that
* many digits to the left of the decimal point will be 0 in the result.
*
* BigDecimal('3.14159').ceil(3) -> 3.142
*
* BigDecimal('13345.234').ceil(-2) -> 13400.0
*/
static VALUE
BigDecimal_ceil(int argc, VALUE *argv, VALUE self)
{
ENTER(5);
Real *c, *a;
U_LONG mx;
int iLoc;
VALUE vLoc;
U_LONG pl = VpSetPrecLimit(0);
if(rb_scan_args(argc,argv,"01",&vLoc)==0) {
iLoc = 0;
} else {
Check_Type(vLoc, T_FIXNUM);
iLoc = FIX2INT(vLoc);
}
GUARD_OBJ(a,GetVpValue(self,1));
mx = a->Prec *(VpBaseFig() + 1);
GUARD_OBJ(c,VpCreateRbObject(mx, "0"));
VpSetPrecLimit(pl);
VpActiveRound(c,a,VP_ROUND_CEIL,iLoc);
return ToValue(c);
}
|
#coerce ⇒ Object
The coerce method provides support for Ruby type coercion. It is not enabled by default.
This means that binary operations like + * / or - can often be performed on a BigDecimal and an object of another type, if the other object can be coerced into a BigDecimal value.
e.g. a = BigDecimal.new("1.0") b = a / 2.0 -> 0.5
Note that coercing a String to a BigDecimal is not supported by default; it requires a special compile-time option when building Ruby.
|
# File 'bigdecimal.c'
/* The coerce method provides support for Ruby type coercion. It is not
* enabled by default.
*
* This means that binary operations like + * / or - can often be performed
* on a BigDecimal and an object of another type, if the other object can
* be coerced into a BigDecimal value.
*
* e.g.
* a = BigDecimal.new("1.0")
* b = a / 2.0 -> 0.5
*
* Note that coercing a String to a BigDecimal is not supported by default;
* it requires a special compile-time option when building Ruby.
*/
static VALUE
BigDecimal_coerce(VALUE self, VALUE other)
{
ENTER(2);
VALUE obj;
Real *b;
if(TYPE(other) == T_FLOAT) {
obj = rb_assoc_new(other, BigDecimal_to_f(self));
} else {
GUARD_OBJ(b,GetVpValue(other,1));
obj = rb_assoc_new(b->obj, self);
}
return obj;
}
|
#div ⇒ Object
#divmod ⇒ Object
Divides by the specified value, and returns the quotient and modulus as BigDecimal numbers. The quotient is rounded towards negative infinity.
For example:
require 'bigdecimal'
a = BigDecimal.new("42") b = BigDecimal.new("9")
q,m = a.divmod(b)
c = q * b + m
a == c -> true
The quotient q is (a/b).floor, and the modulus is the amount that must be added to q * b to get a.
|
# File 'bigdecimal.c'
/* Divides by the specified value, and returns the quotient and modulus
* as BigDecimal numbers. The quotient is rounded towards negative infinity.
*
* For example:
*
* require 'bigdecimal'
*
* a = BigDecimal.new("42")
* b = BigDecimal.new("9")
*
* q,m = a.divmod(b)
*
* c = q * b + m
*
* a == c -> true
*
* The quotient q is (a/b).floor, and the modulus is the amount that must be
* added to q * b to get a.
*/
static VALUE
BigDecimal_divmod(VALUE self, VALUE r)
{
ENTER(5);
VALUE obj;
Real *div=NULL, *mod=NULL;
obj = BigDecimal_DoDivmod(self,r,&div,&mod);
if(obj!=(VALUE)0) return obj;
SAVE(div);SAVE(mod);
obj = rb_assoc_new(ToValue(div), ToValue(mod));
return obj;
}
|
#dup ⇒ Object
#eql? ⇒ Object
Tests for value equality; returns true if the values are equal.
The == and === operators and the eql? method have the same implementation for BigDecimal.
Values may be coerced to perform the comparison:
BigDecimal.new('1.0') == 1.0 -> true
|
# File 'bigdecimal.c'
/*
* Tests for value equality; returns true if the values are equal.
*
* The == and === operators and the eql? method have the same implementation
* for BigDecimal.
*
* Values may be coerced to perform the comparison:
*
* BigDecimal.new('1.0') == 1.0 -> true
*/
static VALUE
BigDecimal_eq(VALUE self, VALUE r)
{
return BigDecimalCmp(self, r, '=');
}
|
#exponent ⇒ Object
Returns the exponent of the BigDecimal number, as an Integer.
If the number can be represented as 0.xxxxxx*10**n where xxxxxx is a string of digits with no leading zeros, then n is the exponent.
|
# File 'bigdecimal.c'
/* Returns the exponent of the BigDecimal number, as an Integer.
*
* If the number can be represented as 0.xxxxxx*10**n where xxxxxx is a string
* of digits with no leading zeros, then n is the exponent.
*/
static VALUE
BigDecimal_exponent(VALUE self)
{
S_LONG e = VpExponent10(GetVpValue(self,1));
return INT2NUM(e);
}
|
#finite? ⇒ Object
Returns True if the value is finite (not NaN or infinite)
|
# File 'bigdecimal.c'
/* Returns True if the value is finite (not NaN or infinite) */
static VALUE
BigDecimal_IsFinite(VALUE self)
{
Real *p = GetVpValue(self,1);
if(VpIsNaN(p)) return Qfalse;
if(VpIsInf(p)) return Qfalse;
return Qtrue;
}
|
#fix ⇒ Object
Return the integer part of the number.
|
# File 'bigdecimal.c'
/* Return the integer part of the number.
*/
static VALUE
BigDecimal_fix(VALUE self)
{
ENTER(5);
Real *c, *a;
U_LONG mx;
GUARD_OBJ(a,GetVpValue(self,1));
mx = a->Prec *(VpBaseFig() + 1);
GUARD_OBJ(c,VpCreateRbObject(mx, "0"));
VpActiveRound(c,a,VP_ROUND_DOWN,0); /* 0: round off */
return ToValue(c);
}
|
#floor ⇒ Object
floor(n)
Return the largest integer less than or equal to the value, as a BigDecimal.
BigDecimal('3.14159').floor -> 3
BigDecimal('-9.1').floor -> -10
If n is specified and positive, the fractional part of the result has no more than that many digits.
If n is specified and negative, at least that many digits to the left of the decimal point will be 0 in the result.
BigDecimal('3.14159').floor(3) -> 3.141
BigDecimal('13345.234').floor(-2) -> 13300.0
|
# File 'bigdecimal.c'
/* call-seq:
* floor(n)
*
* Return the largest integer less than or equal to the value, as a BigDecimal.
*
* BigDecimal('3.14159').floor -> 3
*
* BigDecimal('-9.1').floor -> -10
*
* If n is specified and positive, the fractional part of the result has no
* more than that many digits.
*
* If n is specified and negative, at least that
* many digits to the left of the decimal point will be 0 in the result.
*
* BigDecimal('3.14159').floor(3) -> 3.141
*
* BigDecimal('13345.234').floor(-2) -> 13300.0
*/
static VALUE
BigDecimal_floor(int argc, VALUE *argv, VALUE self)
{
ENTER(5);
Real *c, *a;
U_LONG mx;
int iLoc;
VALUE vLoc;
U_LONG pl = VpSetPrecLimit(0);
if(rb_scan_args(argc,argv,"01",&vLoc)==0) {
iLoc = 0;
} else {
Check_Type(vLoc, T_FIXNUM);
iLoc = FIX2INT(vLoc);
}
GUARD_OBJ(a,GetVpValue(self,1));
mx = a->Prec *(VpBaseFig() + 1);
GUARD_OBJ(c,VpCreateRbObject(mx, "0"));
VpSetPrecLimit(pl);
VpActiveRound(c,a,VP_ROUND_FLOOR,iLoc);
return ToValue(c);
}
|
#frac ⇒ Object
Return the fractional part of the number.
|
# File 'bigdecimal.c'
/* Return the fractional part of the number.
*/
static VALUE
BigDecimal_frac(VALUE self)
{
ENTER(5);
Real *c, *a;
U_LONG mx;
GUARD_OBJ(a,GetVpValue(self,1));
mx = a->Prec *(VpBaseFig() + 1);
GUARD_OBJ(c,VpCreateRbObject(mx, "0"));
VpFrac(c, a);
return ToValue(c);
}
|
#hash ⇒ Object
#infinite? ⇒ Object
Returns True if the value is infinite
|
# File 'bigdecimal.c'
/* Returns True if the value is infinite */
static VALUE
BigDecimal_IsInfinite(VALUE self)
{
Real *p = GetVpValue(self,1);
if(VpIsPosInf(p)) return INT2FIX(1);
if(VpIsNegInf(p)) return INT2FIX(-1);
return Qnil;
}
|
#inspect ⇒ Object
Returns debugging information about the value as a string of comma-separated values in angle brackets with a leading #:
BigDecimal.new("1234.5678").inspect -> "#<BigDecimal:b7ea1130,'0.12345678E4',8(12)>"
The first part is the address, the second is the value as a string, and the final part ss(mm) is the current number of significant digits and the maximum number of significant digits, respectively.
|
# File 'bigdecimal.c'
/* Returns debugging information about the value as a string of comma-separated
* values in angle brackets with a leading #:
*
* BigDecimal.new("1234.5678").inspect ->
* "#<BigDecimal:b7ea1130,'0.12345678E4',8(12)>"
*
* The first part is the address, the second is the value as a string, and
* the final part ss(mm) is the current number of significant digits and the
* maximum number of significant digits, respectively.
*/
static VALUE
BigDecimal_inspect(VALUE self)
{
ENTER(5);
Real *vp;
volatile VALUE obj;
unsigned int nc;
char *psz, *tmp;
GUARD_OBJ(vp,GetVpValue(self,1));
nc = VpNumOfChars(vp,"E");
nc +=(nc + 9) / 10;
obj = rb_str_new(0, nc+256);
psz = RSTRING_PTR(obj);
sprintf(psz,"#<BigDecimal:%lx,'",self);
tmp = psz + strlen(psz);
VpToString(vp, tmp, 10, 0);
tmp += strlen(tmp);
sprintf(tmp,"',%lu(%lu)>",VpPrec(vp)*VpBaseFig(),VpMaxPrec(vp)*VpBaseFig());
rb_str_resize(obj, strlen(psz));
return obj;
}
|
#modulo ⇒ Object
a % b a.modulo(b)
Returns the modulus from dividing by b. See divmod.
|
# File 'bigdecimal.c'
/* call-seq:
* a % b
* a.modulo(b)
*
* Returns the modulus from dividing by b. See divmod.
*/
static VALUE
BigDecimal_mod(VALUE self, VALUE r)
|
#mult ⇒ Object
#nan? ⇒ Object
Returns True if the value is Not a Number
|
# File 'bigdecimal.c'
/* Returns True if the value is Not a Number */
static VALUE
BigDecimal_IsNaN(VALUE self)
{
Real *p = GetVpValue(self,1);
if(VpIsNaN(p)) return Qtrue;
return Qfalse;
}
|
#nonzero? ⇒ Object
Returns True if the value is non-zero.
|
# File 'bigdecimal.c'
/* Returns True if the value is non-zero. */
static VALUE
BigDecimal_nonzero(VALUE self)
{
Real *a = GetVpValue(self,1);
return VpIsZero(a) ? Qnil : self;
}
|
#power ⇒ Object
power(n)
Returns the value raised to the power of n. Note that n must be an Integer.
Also available as the operator **
|
# File 'bigdecimal.c'
/* call-seq:
* power(n)
*
* Returns the value raised to the power of n. Note that n must be an Integer.
*
* Also available as the operator **
*/
static VALUE
BigDecimal_power(VALUE self, VALUE p)
{
ENTER(5);
Real *x, *y;
S_LONG mp, ma, n;
Check_Type(p, T_FIXNUM);
n = FIX2INT(p);
ma = n;
if(ma < 0) ma = -ma;
if(ma == 0) ma = 1;
GUARD_OBJ(x,GetVpValue(self,1));
if(VpIsDef(x)) {
mp = x->Prec *(VpBaseFig() + 1);
GUARD_OBJ(y,VpCreateRbObject(mp *(ma + 1), "0"));
} else {
GUARD_OBJ(y,VpCreateRbObject(1, "0"));
}
VpPower(y, x, n);
return ToValue(y);
}
|
#precs ⇒ Object
precs
Returns an Array of two Integer values.
The first value is the current number of significant digits in the BigDecimal. The second value is the maximum number of significant digits for the BigDecimal.
|
# File 'bigdecimal.c'
/* call-seq:
* precs
*
* Returns an Array of two Integer values.
*
* The first value is the current number of significant digits in the
* BigDecimal. The second value is the maximum number of significant digits
* for the BigDecimal.
*/
static VALUE
BigDecimal_prec(VALUE self)
{
ENTER(1);
Real *p;
VALUE obj;
GUARD_OBJ(p,GetVpValue(self,1));
obj = rb_assoc_new(INT2NUM(p->Prec*VpBaseFig()),
INT2NUM(p->MaxPrec*VpBaseFig()));
return obj;
}
|
#quo ⇒ Object
div(value, digits) quo(value)
Divide by the specified value.
e.g.
c = a.div(b,n)
- digits
-
If specified and less than the number of significant digits of the result, the result is rounded to that number of digits, according to BigDecimal.mode.
If digits is 0, the result is the same as the / operator. If not, the result is an integer BigDecimal, by analogy with Float#div.
The alias quo is provided since div(value, 0) is the same as computing the quotient; see divmod.
|
# File 'bigdecimal.c'
/* call-seq:
* div(value, digits)
* quo(value)
*
* Divide by the specified value.
*
* e.g.
* c = a.div(b,n)
*
* digits:: If specified and less than the number of significant digits of the result, the result is rounded to that number of digits, according to BigDecimal.mode.
*
* If digits is 0, the result is the same as the / operator. If not, the
* result is an integer BigDecimal, by analogy with Float#div.
*
* The alias quo is provided since div(value, 0) is the same as computing
* the quotient; see divmod.
*/
static VALUE
BigDecimal_div(VALUE self, VALUE r)
/* For c = self/r: with round operation */
{
ENTER(5);
Real *c=NULL, *res=NULL, *div = NULL;
r = BigDecimal_divide(&c, &res, &div, self, r);
if(r!=(VALUE)0) return r; /* coerced by other */
SAVE(c);SAVE(res);SAVE(div);
/* a/b = c + r/b */
/* c xxxxx
r 00000yyyyy ==> (y/b)*BASE >= HALF_BASE
*/
/* Round */
if(VpHasVal(div)) { /* frac[0] must be zero for NaN,INF,Zero */
VpInternalRound(c,0,c->frac[c->Prec-1],(VpBaseVal()*res->frac[0])/div->frac[0]);
}
return ToValue(c);
}
|
#remainder ⇒ Object
Returns the remainder from dividing by the value.
If the values divided are of the same sign, the remainder is the same as the modulus (see divmod).
Otherwise, the remainder is the modulus minus the value divided by.
|
# File 'bigdecimal.c'
/* Returns the remainder from dividing by the value.
*
* If the values divided are of the same sign, the remainder is the same as
* the modulus (see divmod).
*
* Otherwise, the remainder is the modulus minus the value divided by.
*/
static VALUE
BigDecimal_remainder(VALUE self, VALUE r) /* remainder */
{
VALUE f;
Real *d,*rv=0;
f = BigDecimal_divremain(self,r,&d,&rv);
if(f!=(VALUE)0) return f;
return ToValue(rv);
}
|
#round ⇒ Object
round(n,mode)
Round to the nearest 1 (by default), returning the result as a BigDecimal.
BigDecimal('3.14159').round -> 3
BigDecimal('8.7').round -> 9
If n is specified and positive, the fractional part of the result has no more than that many digits.
If n is specified and negative, at least that many digits to the left of the decimal point will be 0 in the result.
BigDecimal('3.14159').round(3) -> 3.142
BigDecimal('13345.234').round(-2) -> 13300.0
The value of the optional mode argument can be used to determine how rounding is performed; see BigDecimal.mode.
|
# File 'bigdecimal.c'
/* call-seq:
* round(n,mode)
*
* Round to the nearest 1 (by default), returning the result as a BigDecimal.
*
* BigDecimal('3.14159').round -> 3
*
* BigDecimal('8.7').round -> 9
*
* If n is specified and positive, the fractional part of the result has no
* more than that many digits.
*
* If n is specified and negative, at least that many digits to the left of the
* decimal point will be 0 in the result.
*
* BigDecimal('3.14159').round(3) -> 3.142
*
* BigDecimal('13345.234').round(-2) -> 13300.0
*
* The value of the optional mode argument can be used to determine how
* rounding is performed; see BigDecimal.mode.
*/
static VALUE
BigDecimal_round(int argc, VALUE *argv, VALUE self)
{
ENTER(5);
Real *c, *a;
int iLoc = 0;
U_LONG mx;
VALUE vLoc;
VALUE vRound;
U_LONG pl;
int sw = VpGetRoundMode();
int na = rb_scan_args(argc,argv,"02",&vLoc,&vRound);
switch(na) {
case 0:
iLoc = 0;
break;
case 1:
Check_Type(vLoc, T_FIXNUM);
iLoc = FIX2INT(vLoc);
break;
case 2:
Check_Type(vLoc, T_FIXNUM);
iLoc = FIX2INT(vLoc);
Check_Type(vRound, T_FIXNUM);
sw = FIX2INT(vRound);
if(!VpIsRoundMode(sw)) {
rb_raise(rb_eTypeError, "invalid rounding mode");
return Qnil;
}
break;
}
pl = VpSetPrecLimit(0);
GUARD_OBJ(a,GetVpValue(self,1));
mx = a->Prec *(VpBaseFig() + 1);
GUARD_OBJ(c,VpCreateRbObject(mx, "0"));
VpSetPrecLimit(pl);
VpActiveRound(c,a,sw,iLoc);
return ToValue(c);
}
|
#sign ⇒ Object
Returns the sign of the value.
Returns a positive value if > 0, a negative value if < 0, and a zero if == 0.
The specific value returned indicates the type and sign of the BigDecimal, as follows:
- BigDecimal::SIGN_NaN
-
value is Not a Number
- BigDecimal::SIGN_POSITIVE_ZERO
-
value is +0
- BigDecimal::SIGN_NEGATIVE_ZERO
-
value is -0
- BigDecimal::SIGN_POSITIVE_INFINITE
-
value is +infinity
- BigDecimal::SIGN_NEGATIVE_INFINITE
-
value is -infinity
- BigDecimal::SIGN_POSITIVE_FINITE
-
value is positive
- BigDecimal::SIGN_NEGATIVE_FINITE
-
value is negative
|
# File 'bigdecimal.c'
/* Returns the sign of the value.
*
* Returns a positive value if > 0, a negative value if < 0, and a
* zero if == 0.
*
* The specific value returned indicates the type and sign of the BigDecimal,
* as follows:
*
* BigDecimal::SIGN_NaN:: value is Not a Number
* BigDecimal::SIGN_POSITIVE_ZERO:: value is +0
* BigDecimal::SIGN_NEGATIVE_ZERO:: value is -0
* BigDecimal::SIGN_POSITIVE_INFINITE:: value is +infinity
* BigDecimal::SIGN_NEGATIVE_INFINITE:: value is -infinity
* BigDecimal::SIGN_POSITIVE_FINITE:: value is positive
* BigDecimal::SIGN_NEGATIVE_FINITE:: value is negative
*/
static VALUE
BigDecimal_sign(VALUE self)
{ /* sign */
int s = GetVpValue(self,1)->sign;
return INT2FIX(s);
}
|
#split ⇒ Object
Splits a BigDecimal number into four parts, returned as an array of values.
The first value represents the sign of the BigDecimal, and is -1 or 1, or 0 if the BigDecimal is Not a Number.
The second value is a string representing the significant digits of the BigDecimal, with no leading zeros.
The third value is the base used for arithmetic (currently always 10) as an Integer.
The fourth value is an Integer exponent.
If the BigDecimal can be represented as 0.xxxxxx*10**n, then xxxxxx is the string of significant digits with no leading zeros, and n is the exponent.
From these values, you can translate a BigDecimal to a float as follows:
sign, significant_digits, base, exponent = a.split
f = sign * "0.#{significant_digits}".to_f * (base ** exponent)
(Note that the to_f method is provided as a more convenient way to translate a BigDecimal to a Float.)
|
# File 'bigdecimal.c'
/* Splits a BigDecimal number into four parts, returned as an array of values.
*
* The first value represents the sign of the BigDecimal, and is -1 or 1, or 0
* if the BigDecimal is Not a Number.
*
* The second value is a string representing the significant digits of the
* BigDecimal, with no leading zeros.
*
* The third value is the base used for arithmetic (currently always 10) as an
* Integer.
*
* The fourth value is an Integer exponent.
*
* If the BigDecimal can be represented as 0.xxxxxx*10**n, then xxxxxx is the
* string of significant digits with no leading zeros, and n is the exponent.
*
* From these values, you can translate a BigDecimal to a float as follows:
*
* sign, significant_digits, base, exponent = a.split
* f = sign * "0.#{significant_digits}".to_f * (base ** exponent)
*
* (Note that the to_f method is provided as a more convenient way to translate
* a BigDecimal to a Float.)
*/
static VALUE
BigDecimal_split(VALUE self)
{
ENTER(5);
Real *vp;
VALUE obj,str;
S_LONG e;
S_LONG s;
char *psz1;
GUARD_OBJ(vp,GetVpValue(self,1));
str = rb_str_new(0, VpNumOfChars(vp,"E"));
psz1 = RSTRING_PTR(str);
VpSzMantissa(vp,psz1);
s = 1;
if(psz1[0]=='-') {
int len = strlen(psz1+1);
memmove(psz1, psz1+1, len);
psz1[len] = '\0';
s = -1;
}
if(psz1[0]=='N') s=0; /* NaN */
e = VpExponent10(vp);
obj = rb_ary_new2(4);
rb_ary_push(obj, INT2FIX(s));
rb_ary_push(obj, str);
rb_str_resize(str, strlen(psz1));
rb_ary_push(obj, INT2FIX(10));
rb_ary_push(obj, INT2NUM(e));
return obj;
}
|
#sqrt ⇒ Object
sqrt(n)
Returns the square root of the value.
If n is specified, returns at least that many significant digits.
|
# File 'bigdecimal.c'
/* call-seq:
* sqrt(n)
*
* Returns the square root of the value.
*
* If n is specified, returns at least that many significant digits.
*/
static VALUE
BigDecimal_sqrt(VALUE self, VALUE nFig)
{
ENTER(5);
Real *c, *a;
S_INT mx, n;
GUARD_OBJ(a,GetVpValue(self,1));
mx = a->Prec *(VpBaseFig() + 1);
n = GetPositiveInt(nFig) + VpDblFig() + 1;
if(mx <= n) mx = n;
GUARD_OBJ(c,VpCreateRbObject(mx, "0"));
VpSqrt(c, a);
return ToValue(c);
}
|
#sub ⇒ Object
#to_digits ⇒ Object
Converts a BigDecimal to a String of the form "nnnnnn.mmm". This method is deprecated; use BigDecimal#to_s("F") instead.
33 34 35 36 37 38 39 40 41 |
# File 'lib/bigdecimal/util.rb', line 33 def to_digits if self.nan? || self.infinite? || self.zero? self.to_s else i = self.to_i.to_s s,f,y,z = self.frac.split i + "." + ("0"*(-z)) + f end end |
#to_f ⇒ Object
Returns a new Float object having approximately the same value as the BigDecimal number. Normal accuracy limits and built-in errors of binary Float arithmetic apply.
|
# File 'bigdecimal.c'
/* Returns a new Float object having approximately the same value as the
* BigDecimal number. Normal accuracy limits and built-in errors of binary
* Float arithmetic apply.
*/
static VALUE
BigDecimal_to_f(VALUE self)
{
ENTER(1);
Real *p;
double d;
S_LONG e;
char *buf;
volatile VALUE str;
GUARD_OBJ(p,GetVpValue(self,1));
if(VpVtoD(&d, &e, p)!=1) return rb_float_new(d);
if (e > DBL_MAX_10_EXP) goto erange;
str = rb_str_new(0, VpNumOfChars(p,"E"));
buf = RSTRING_PTR(str);
VpToString(p, buf, 0, 0);
errno = 0;
d = strtod(buf, 0);
if(errno == ERANGE) {
erange:
VpException(VP_EXCEPTION_OVERFLOW,"BigDecimal to Float conversion",0);
if(d>0.0) d = VpGetDoublePosInf();
else d = VpGetDoubleNegInf();
}
return rb_float_new(d);
}
|
#to_i ⇒ Object
Returns the value as an integer (Fixnum or Bignum).
If the BigNumber is infinity or NaN, returns nil.
|
# File 'bigdecimal.c'
/* Returns the value as an integer (Fixnum or Bignum).
*
* If the BigNumber is infinity or NaN, returns nil.
*/
static VALUE
BigDecimal_to_i(VALUE self)
{
ENTER(5);
int e,n,i,nf;
U_LONG v,b,j;
volatile VALUE str;
char *psz,*pch;
Real *p;
GUARD_OBJ(p,GetVpValue(self,1));
/* Infinity or NaN not converted. */
if(VpIsNaN(p)) {
VpException(VP_EXCEPTION_NaN,"Computation results to 'NaN'(Not a Number)",0);
return Qnil;
} else if(VpIsPosInf(p)) {
VpException(VP_EXCEPTION_INFINITY,"Computation results to 'Infinity'",0);
return Qnil;
} else if(VpIsNegInf(p)) {
VpException(VP_EXCEPTION_INFINITY,"Computation results to '-Infinity'",0);
return Qnil;
}
e = VpExponent10(p);
if(e<=0) return INT2FIX(0);
nf = VpBaseFig();
if(e<=nf) {
e = VpGetSign(p)*p->frac[0];
return INT2FIX(e);
}
str = rb_str_new(0, e+nf+2);
psz = RSTRING_PTR(str);
n = (e+nf-1)/nf;
pch = psz;
if(VpGetSign(p)<0) *pch++ = '-';
for(i=0;i<n;++i) {
b = VpBaseVal()/10;
if(i>=(int)p->Prec) {
while(b) {
*pch++ = '0';
b /= 10;
}
continue;
}
v = p->frac[i];
while(b) {
j = v/b;
*pch++ = (char)(j + '0');
v -= j*b;
b /= 10;
}
}
*pch++ = 0;
return rb_cstr2inum(psz,10);
}
|
#to_int ⇒ Object
Returns the value as an integer (Fixnum or Bignum).
If the BigNumber is infinity or NaN, returns nil.
|
# File 'bigdecimal.c'
/* Returns the value as an integer (Fixnum or Bignum).
*
* If the BigNumber is infinity or NaN, returns nil.
*/
static VALUE
BigDecimal_to_i(VALUE self)
{
ENTER(5);
int e,n,i,nf;
U_LONG v,b,j;
volatile VALUE str;
char *psz,*pch;
Real *p;
GUARD_OBJ(p,GetVpValue(self,1));
/* Infinity or NaN not converted. */
if(VpIsNaN(p)) {
VpException(VP_EXCEPTION_NaN,"Computation results to 'NaN'(Not a Number)",0);
return Qnil;
} else if(VpIsPosInf(p)) {
VpException(VP_EXCEPTION_INFINITY,"Computation results to 'Infinity'",0);
return Qnil;
} else if(VpIsNegInf(p)) {
VpException(VP_EXCEPTION_INFINITY,"Computation results to '-Infinity'",0);
return Qnil;
}
e = VpExponent10(p);
if(e<=0) return INT2FIX(0);
nf = VpBaseFig();
if(e<=nf) {
e = VpGetSign(p)*p->frac[0];
return INT2FIX(e);
}
str = rb_str_new(0, e+nf+2);
psz = RSTRING_PTR(str);
n = (e+nf-1)/nf;
pch = psz;
if(VpGetSign(p)<0) *pch++ = '-';
for(i=0;i<n;++i) {
b = VpBaseVal()/10;
if(i>=(int)p->Prec) {
while(b) {
*pch++ = '0';
b /= 10;
}
continue;
}
v = p->frac[i];
while(b) {
j = v/b;
*pch++ = (char)(j + '0');
v -= j*b;
b /= 10;
}
}
*pch++ = 0;
return rb_cstr2inum(psz,10);
}
|
#to_r ⇒ Object
Converts a BigDecimal to a Rational.
44 45 46 47 48 49 50 51 52 53 |
# File 'lib/bigdecimal/util.rb', line 44 def to_r sign,digits,base,power = self.split numerator = sign*digits.to_i denomi_power = power - digits.size # base is always 10 if denomi_power < 0 Rational(numerator,base ** (-denomi_power)) else Rational(numerator * (base ** denomi_power),1) end end |
#to_s ⇒ Object
to_s(s)
Converts the value to a string.
The default format looks like 0.xxxxEnn.
The optional parameter s consists of either an integer; or an optional '+' or ' ', followed by an optional number, followed by an optional 'E' or 'F'.
If there is a '+' at the start of s, positive values are returned with a leading '+'.
A space at the start of s returns positive values with a leading space.
If s contains a number, a space is inserted after each group of that many fractional digits.
If s ends with an 'E', engineering notation (0.xxxxEnn) is used.
If s ends with an 'F', conventional floating point notation is used.
Examples:
BigDecimal.new('-123.45678901234567890').to_s('5F') -> '-123.45678 90123 45678 9'
BigDecimal.new('123.45678901234567890').to_s('+8F') -> '+123.45678901 23456789'
BigDecimal.new('123.45678901234567890').to_s(' F') -> ' 123.4567890123456789'
|
# File 'bigdecimal.c'
/* call-seq:
* to_s(s)
*
* Converts the value to a string.
*
* The default format looks like 0.xxxxEnn.
*
* The optional parameter s consists of either an integer; or an optional '+'
* or ' ', followed by an optional number, followed by an optional 'E' or 'F'.
*
* If there is a '+' at the start of s, positive values are returned with
* a leading '+'.
*
* A space at the start of s returns positive values with a leading space.
*
* If s contains a number, a space is inserted after each group of that many
* fractional digits.
*
* If s ends with an 'E', engineering notation (0.xxxxEnn) is used.
*
* If s ends with an 'F', conventional floating point notation is used.
*
* Examples:
*
* BigDecimal.new('-123.45678901234567890').to_s('5F') -> '-123.45678 90123 45678 9'
*
* BigDecimal.new('123.45678901234567890').to_s('+8F') -> '+123.45678901 23456789'
*
* BigDecimal.new('123.45678901234567890').to_s(' F') -> ' 123.4567890123456789'
*/
static VALUE
BigDecimal_to_s(int argc, VALUE *argv, VALUE self)
{
ENTER(5);
int fmt=0; /* 0:E format */
int fPlus=0; /* =0:default,=1: set ' ' before digits ,set '+' before digits. */
Real *vp;
volatile VALUE str;
char *psz;
char ch;
U_LONG nc;
S_INT mc = 0;
VALUE f;
GUARD_OBJ(vp,GetVpValue(self,1));
if(rb_scan_args(argc,argv,"01",&f)==1) {
if(TYPE(f)==T_STRING) {
SafeStringValue(f);
psz = RSTRING_PTR(f);
if(*psz==' ') {
fPlus = 1; psz++;
} else if(*psz=='+') {
fPlus = 2; psz++;
}
while((ch=*psz++)!=0) {
if(ISSPACE(ch)) continue;
if(!ISDIGIT(ch)) {
if(ch=='F' || ch=='f') fmt = 1; /* F format */
break;
}
mc = mc * 10 + ch - '0';
}
} else {
mc = GetPositiveInt(f);
}
}
if(fmt) {
nc = VpNumOfChars(vp,"F");
} else {
nc = VpNumOfChars(vp,"E");
}
if(mc>0) nc += (nc + mc - 1) / mc + 1;
str = rb_str_new(0, nc);
psz = RSTRING_PTR(str);
if(fmt) {
VpToFString(vp, psz, mc, fPlus);
} else {
VpToString (vp, psz, mc, fPlus);
}
rb_str_resize(str, strlen(psz));
return str;
}
|
#truncate ⇒ Object
truncate(n)
Truncate to the nearest 1, returning the result as a BigDecimal.
BigDecimal('3.14159').truncate -> 3
BigDecimal('8.7').truncate -> 8
If n is specified and positive, the fractional part of the result has no more than that many digits.
If n is specified and negative, at least that many digits to the left of the decimal point will be 0 in the result.
BigDecimal('3.14159').truncate(3) -> 3.141
BigDecimal('13345.234').truncate(-2) -> 13300.0
|
# File 'bigdecimal.c'
/* call-seq:
* truncate(n)
*
* Truncate to the nearest 1, returning the result as a BigDecimal.
*
* BigDecimal('3.14159').truncate -> 3
*
* BigDecimal('8.7').truncate -> 8
*
* If n is specified and positive, the fractional part of the result has no
* more than that many digits.
*
* If n is specified and negative, at least that many digits to the left of the
* decimal point will be 0 in the result.
*
* BigDecimal('3.14159').truncate(3) -> 3.141
*
* BigDecimal('13345.234').truncate(-2) -> 13300.0
*/
static VALUE
BigDecimal_truncate(int argc, VALUE *argv, VALUE self)
{
ENTER(5);
Real *c, *a;
int iLoc;
U_LONG mx;
VALUE vLoc;
U_LONG pl = VpSetPrecLimit(0);
if(rb_scan_args(argc,argv,"01",&vLoc)==0) {
iLoc = 0;
} else {
Check_Type(vLoc, T_FIXNUM);
iLoc = FIX2INT(vLoc);
}
GUARD_OBJ(a,GetVpValue(self,1));
mx = a->Prec *(VpBaseFig() + 1);
GUARD_OBJ(c,VpCreateRbObject(mx, "0"));
VpSetPrecLimit(pl);
VpActiveRound(c,a,VP_ROUND_DOWN,iLoc); /* 0: truncate */
return ToValue(c);
}
|
#zero? ⇒ Object
Returns True if the value is zero.
|
# File 'bigdecimal.c'
/* Returns True if the value is zero. */
static VALUE
BigDecimal_zero(VALUE self)
{
Real *a = GetVpValue(self,1);
return VpIsZero(a) ? Qtrue : Qfalse;
}
|