Class: BigDecimal

Inherits:
Numeric
  • Object
show all
Defined in:
lib/bigdecimal/util.rb,
bigdecimal.c,
bigdecimal.c

Overview

BigDecimal provides arbitrary-precision floating point decimal arithmetic.

Introduction

Ruby provides built-in support for arbitrary precision integer arithmetic.

For example:

42**13 #=> 1265437718438866624512

BigDecimal provides similar support for very large or very accurate floating point numbers.

Decimal arithmetic is also useful for general calculation, because it provides the correct answers people expect–whereas normal binary floating point arithmetic often introduces subtle errors because of the conversion between base 10 and base 2.

For example, try:

sum = 0
10_000.times do
  sum = sum + 0.0001
end
print sum #=> 0.9999999999999062

and contrast with the output from:

require 'bigdecimal'

sum = BigDecimal.new("0")
10_000.times do
  sum = sum + BigDecimal.new("0.0001")
end
print sum #=> 0.1E1

Similarly:

(BigDecimal.new(“1.2”) - BigDecimal(“1.0”)) == BigDecimal(“0.2”) #=> true

(1.2 - 1.0) == 0.2 #=> false

Special features of accurate decimal arithmetic

Because BigDecimal is more accurate than normal binary floating point arithmetic, it requires some special values.

Infinity

BigDecimal sometimes needs to return infinity, for example if you divide a value by zero.

BigDecimal.new(“1.0”) / BigDecimal.new(“0.0”) #=> Infinity BigDecimal.new(“-1.0”) / BigDecimal.new(“0.0”) #=> -Infinity

You can represent infinite numbers to BigDecimal using the strings 'Infinity', '+Infinity' and '-Infinity' (case-sensitive)

Not a Number

When a computation results in an undefined value, the special value NaN (for ‘not a number’) is returned.

Example:

BigDecimal.new(“0.0”) / BigDecimal.new(“0.0”) #=> NaN

You can also create undefined values.

NaN is never considered to be the same as any other value, even NaN itself:

n = BigDecimal.new(‘NaN’) n == 0.0 #=> false n == n #=> false

Positive and negative zero

If a computation results in a value which is too small to be represented as a BigDecimal within the currently specified limits of precision, zero must be returned.

If the value which is too small to be represented is negative, a BigDecimal value of negative zero is returned.

BigDecimal.new(“1.0”) / BigDecimal.new(“-Infinity”) #=> -0.0

If the value is positive, a value of positive zero is returned.

BigDecimal.new(“1.0”) / BigDecimal.new(“Infinity”) #=> 0.0

(See BigDecimal.mode for how to specify limits of precision.)

Note that -0.0 and 0.0 are considered to be the same for the purposes of comparison.

Note also that in mathematics, there is no particular concept of negative or positive zero; true mathematical zero has no sign.

License

Copyright © 2002 by Shigeo Kobayashi <[email protected]>.

You may distribute under the terms of either the GNU General Public License or the Artistic License, as specified in the README file of the BigDecimal distribution.

Maintained by mrkn <[email protected]> and ruby-core members.

Documented by zzak <[email protected]>, mathew <[email protected]>, and many other contributors.

Constant Summary collapse

BASE =

Base value used in internal calculations. On a 32 bit system, BASE is 10000, indicating that calculation is done in groups of 4 digits. (If it were larger, BASE**2 wouldn’t fit in 32 bits, so you couldn’t guarantee that two groups could always be multiplied together without overflow.)

INT2FIX((SIGNED_VALUE)VpBaseVal())
EXCEPTION_ALL =

Determines whether overflow, underflow or zero divide result in an exception being thrown. See BigDecimal.mode.

0xff
EXCEPTION_NaN =

Determines what happens when the result of a computation is not a number (NaN). See BigDecimal.mode.

0x02
EXCEPTION_INFINITY =

Determines what happens when the result of a computation is infinity. See BigDecimal.mode.

0x01
EXCEPTION_UNDERFLOW =

Determines what happens when the result of a computation is an underflow (a result too small to be represented). See BigDecimal.mode.

0x04
EXCEPTION_OVERFLOW =

Determines what happens when the result of a computation is an overflow (a result too large to be represented). See BigDecimal.mode.

0x01
EXCEPTION_ZERODIVIDE =

Determines what happens when a division by zero is performed. See BigDecimal.mode.

0x01
ROUND_MODE =

Determines what happens when a result must be rounded in order to fit in the appropriate number of significant digits. See BigDecimal.mode.

0x100
ROUND_UP =

Indicates that values should be rounded away from zero. See BigDecimal.mode.

1
ROUND_DOWN =

Indicates that values should be rounded towards zero. See BigDecimal.mode.

2
ROUND_HALF_UP =

Indicates that digits >= 5 should be rounded up, others rounded down. See BigDecimal.mode.

3
ROUND_HALF_DOWN =

Indicates that digits >= 6 should be rounded up, others rounded down. See BigDecimal.mode.

4
ROUND_CEILING =

Round towards +Infinity. See BigDecimal.mode.

5
ROUND_FLOOR =

Round towards -Infinity. See BigDecimal.mode.

6
ROUND_HALF_EVEN =

Round towards the even neighbor. See BigDecimal.mode.

7
SIGN_NaN =

Indicates that a value is not a number. See BigDecimal.sign.

0
SIGN_POSITIVE_ZERO =

Indicates that a value is +0. See BigDecimal.sign.

1
SIGN_NEGATIVE_ZERO =

Indicates that a value is -0. See BigDecimal.sign.

-1
SIGN_POSITIVE_FINITE =

Indicates that a value is positive and finite. See BigDecimal.sign.

2
SIGN_NEGATIVE_FINITE =

Indicates that a value is negative and finite. See BigDecimal.sign.

-2
SIGN_POSITIVE_INFINITE =

Indicates that a value is positive and infinite. See BigDecimal.sign.

3
SIGN_NEGATIVE_INFINITE =

Indicates that a value is negative and infinite. See BigDecimal.sign.

-3
INFINITY =

Positive infinity value.

BigDecimal_global_new(1, &arg, rb_cBigDecimal)
NAN =

‘Not a Number’ value.

BigDecimal_global_new(1, &arg, rb_cBigDecimal)

Class Method Summary collapse

Instance Method Summary collapse

Constructor Details

#new(initial, digits) ⇒ Object

Create a new BigDecimal object.

initial

The initial value, as an Integer, a Float, a Rational, a BigDecimal, or a String.

If it is a String, spaces are ignored and unrecognized characters terminate the value.

digits

The number of significant digits, as a Fixnum. If omitted or 0, the number of significant digits is determined from the initial value.

The actual number of significant digits used in computation is usually larger than the specified number.

Exceptions

TypeError

If the initial type is neither Fixnum, Bignum, Float, Rational, nor BigDecimal, this exception is raised.

TypeError

If the digits is not a Fixnum, this exception is raised.

ArgumentError

If initial is a Float, and the digits is larger than Float::DIG + 1, this exception is raised.

ArgumentError

If the initial is a Float or Rational, and the digits value is omitted, this exception is raised.



2480
2481
2482
2483
2484
2485
2486
2487
2488
2489
2490
2491
2492
2493
2494
2495
2496
2497
2498
# File 'bigdecimal.c', line 2480

static VALUE
BigDecimal_initialize(int argc, VALUE *argv, VALUE self)
{
    ENTER(1);
    Real *pv = rb_check_typeddata(self, &BigDecimal_data_type);
    Real *x;

    GUARD_OBJ(x, BigDecimal_new(argc, argv));
    if (ToValue(x)) {
	pv = VpCopy(pv, x);
    }
    else {
	VpFree(pv);
	pv = x;
    }
    DATA_PTR(self) = pv;
    pv->obj = self;
    return self;
}

Class Method Details

._load(str) ⇒ Object

Internal method used to provide marshalling support. See the Marshal module.



393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
# File 'bigdecimal.c', line 393

static VALUE
BigDecimal_load(VALUE self, VALUE str)
{
    ENTER(2);
    Real *pv;
    unsigned char *pch;
    unsigned char ch;
    unsigned long m=0;

    SafeStringValue(str);
    pch = (unsigned char *)RSTRING_PTR(str);
    /* First get max prec */
    while((*pch) != (unsigned char)'\0' && (ch = *pch++) != (unsigned char)':') {
        if(!ISDIGIT(ch)) {
            rb_raise(rb_eTypeError, "load failed: invalid character in the marshaled string");
        }
        m = m*10 + (unsigned long)(ch-'0');
    }
    if (m > VpBaseFig()) m -= VpBaseFig();
    GUARD_OBJ(pv, VpNewRbClass(m, (char *)pch, self));
    m /= VpBaseFig();
    if (m && pv->MaxPrec > m) {
	pv->MaxPrec = m+1;
    }
    return ToValue(pv);
}

.double_figObject

BigDecimal.double_fig

The BigDecimal.double_fig class method returns the number of digits a Float number is allowed to have. The result depends upon the CPU and OS in use.



306
307
308
309
310
# File 'bigdecimal.c', line 306

static VALUE
BigDecimal_double_fig(VALUE self)
{
    return INT2FIX(VpDblFig());
}

.limit(*args) ⇒ Object

BigDecimal.limit(digits)

Limit the number of significant digits in newly created BigDecimal numbers to the specified value. Rounding is performed as necessary, as specified by BigDecimal.mode.

A limit of 0, the default, means no upper limit.

The limit specified by this method takes less priority over any limit specified to instance methods such as ceil, floor, truncate, or round.



2589
2590
2591
2592
2593
2594
2595
2596
2597
2598
2599
2600
2601
2602
2603
2604
2605
2606
# File 'bigdecimal.c', line 2589

static VALUE
BigDecimal_limit(int argc, VALUE *argv, VALUE self)
{
    VALUE  nFig;
    VALUE  nCur = INT2NUM(VpGetPrecLimit());

    if (rb_scan_args(argc, argv, "01", &nFig) == 1) {
	int nf;
	if (NIL_P(nFig)) return nCur;
	Check_Type(nFig, T_FIXNUM);
	nf = FIX2INT(nFig);
	if (nf < 0) {
	    rb_raise(rb_eArgError, "argument must be positive");
	}
	VpSetPrecLimit(nf);
    }
    return nCur;
}

.mode(*args) ⇒ Object

BigDecimal.mode(mode, value)

Controls handling of arithmetic exceptions and rounding. If no value is supplied, the current value is returned.

Six values of the mode parameter control the handling of arithmetic exceptions:

BigDecimal::EXCEPTION_NaN BigDecimal::EXCEPTION_INFINITY BigDecimal::EXCEPTION_UNDERFLOW BigDecimal::EXCEPTION_OVERFLOW BigDecimal::EXCEPTION_ZERODIVIDE BigDecimal::EXCEPTION_ALL

For each mode parameter above, if the value set is false, computation continues after an arithmetic exception of the appropriate type. When computation continues, results are as follows:

EXCEPTION_NaN

NaN

EXCEPTION_INFINITY

+Infinity or -Infinity

EXCEPTION_UNDERFLOW

0

EXCEPTION_OVERFLOW

+Infinity or -Infinity

EXCEPTION_ZERODIVIDE

+Infinity or -Infinity

One value of the mode parameter controls the rounding of numeric values: BigDecimal::ROUND_MODE. The values it can take are:

ROUND_UP, :up

round away from zero

ROUND_DOWN, :down, :truncate

round towards zero (truncate)

ROUND_HALF_UP, :half_up, :default

round towards the nearest neighbor, unless both neighbors are equidistant, in which case round away from zero. (default)

ROUND_HALF_DOWN, :half_down

round towards the nearest neighbor, unless both neighbors are equidistant, in which case round towards zero.

ROUND_HALF_EVEN, :half_even, :banker

round towards the nearest neighbor, unless both neighbors are equidistant, in which case round towards the even neighbor (Banker’s rounding)

ROUND_CEILING, :ceiling, :ceil

round towards positive infinity (ceil)

ROUND_FLOOR, :floor

round towards negative infinity (floor)



494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
# File 'bigdecimal.c', line 494

static VALUE
BigDecimal_mode(int argc, VALUE *argv, VALUE self)
{
    VALUE which;
    VALUE val;
    unsigned long f,fo;

    rb_scan_args(argc, argv, "11", &which, &val);
    Check_Type(which, T_FIXNUM);
    f = (unsigned long)FIX2INT(which);

    if (f & VP_EXCEPTION_ALL) {
	/* Exception mode setting */
	fo = VpGetException();
	if (val == Qnil) return INT2FIX(fo);
	if (val != Qfalse && val!=Qtrue) {
	    rb_raise(rb_eArgError, "second argument must be true or false");
	    return Qnil; /* Not reached */
	}
	if (f & VP_EXCEPTION_INFINITY) {
	    VpSetException((unsigned short)((val == Qtrue) ? (fo | VP_EXCEPTION_INFINITY) :
			(fo & (~VP_EXCEPTION_INFINITY))));
	}
	fo = VpGetException();
	if (f & VP_EXCEPTION_NaN) {
	    VpSetException((unsigned short)((val == Qtrue) ? (fo | VP_EXCEPTION_NaN) :
			(fo & (~VP_EXCEPTION_NaN))));
	}
	fo = VpGetException();
	if (f & VP_EXCEPTION_UNDERFLOW) {
	    VpSetException((unsigned short)((val == Qtrue) ? (fo | VP_EXCEPTION_UNDERFLOW) :
			(fo & (~VP_EXCEPTION_UNDERFLOW))));
	}
	fo = VpGetException();
	if(f & VP_EXCEPTION_ZERODIVIDE) {
	    VpSetException((unsigned short)((val == Qtrue) ? (fo | VP_EXCEPTION_ZERODIVIDE) :
			(fo & (~VP_EXCEPTION_ZERODIVIDE))));
	}
	fo = VpGetException();
	return INT2FIX(fo);
    }
    if (VP_ROUND_MODE == f) {
	/* Rounding mode setting */
	unsigned short sw;
	fo = VpGetRoundMode();
	if (NIL_P(val)) return INT2FIX(fo);
	sw = check_rounding_mode(val);
	fo = VpSetRoundMode(sw);
	return INT2FIX(fo);
    }
    rb_raise(rb_eTypeError, "first argument for BigDecimal#mode invalid");
    return Qnil;
}

.save_exception_mode { ... } ⇒ Object

Execute the provided block, but preserve the exception mode

BigDecimal.save_exception_mode do
  BigDecimal.mode(BigDecimal::EXCEPTION_OVERFLOW, false)
  BigDecimal.mode(BigDecimal::EXCEPTION_NaN, false)

  BigDecimal.new(BigDecimal('Infinity'))
  BigDecimal.new(BigDecimal('-Infinity'))
  BigDecimal(BigDecimal.new('NaN'))
end

For use with the BigDecimal::EXCEPTION_*

See BigDecimal.mode

Yields:



2649
2650
2651
2652
2653
2654
2655
2656
2657
2658
# File 'bigdecimal.c', line 2649

static VALUE
BigDecimal_save_exception_mode(VALUE self)
{
    unsigned short const exception_mode = VpGetException();
    int state;
    VALUE ret = rb_protect(rb_yield, Qnil, &state);
    VpSetException(exception_mode);
    if (state) rb_jump_tag(state);
    return ret;
}

.save_limit { ... } ⇒ Object

Execute the provided block, but preserve the precision limit

BigDecimal.limit(100)
puts BigDecimal.limit
BigDecimal.save_limit do
    BigDecimal.limit(200)
    puts BigDecimal.limit
end
puts BigDecimal.limit

Yields:



2699
2700
2701
2702
2703
2704
2705
2706
2707
2708
# File 'bigdecimal.c', line 2699

static VALUE
BigDecimal_save_limit(VALUE self)
{
    size_t const limit = VpGetPrecLimit();
    int state;
    VALUE ret = rb_protect(rb_yield, Qnil, &state);
    VpSetPrecLimit(limit);
    if (state) rb_jump_tag(state);
    return ret;
}

.save_rounding_mode { ... } ⇒ Object

Execute the provided block, but preserve the rounding mode

BigDecimal.save_rounding_mode do
  BigDecimal.mode(BigDecimal::ROUND_MODE, :up)
  puts BigDecimal.mode(BigDecimal::ROUND_MODE)
end

For use with the BigDecimal::ROUND_*

See BigDecimal.mode

Yields:



2674
2675
2676
2677
2678
2679
2680
2681
2682
2683
# File 'bigdecimal.c', line 2674

static VALUE
BigDecimal_save_rounding_mode(VALUE self)
{
    unsigned short const round_mode = VpGetRoundMode();
    int state;
    VALUE ret = rb_protect(rb_yield, Qnil, &state);
    VpSetRoundMode(round_mode);
    if (state) rb_jump_tag(state);
    return ret;
}

.verObject

Returns the BigDecimal version number.



120
121
122
123
124
125
126
127
128
129
# File 'bigdecimal.c', line 120

static VALUE
BigDecimal_version(VALUE self)
{
    /*
     * 1.0.0: Ruby 1.8.0
     * 1.0.1: Ruby 1.8.1
     * 1.1.0: Ruby 1.9.3
    */
    return rb_str_new2("1.1.0");
}

Instance Method Details

#%Object

%: a%b = a - (a.to_f/b).floor * b



1376
1377
1378
1379
1380
1381
1382
1383
1384
1385
1386
1387
# File 'bigdecimal.c', line 1376

static VALUE
BigDecimal_mod(VALUE self, VALUE r) /* %: a%b = a - (a.to_f/b).floor * b */
{
    ENTER(3);
    Real *div = NULL, *mod = NULL;

    if (BigDecimal_DoDivmod(self, r, &div, &mod)) {
	SAVE(div); SAVE(mod);
	return ToValue(mod);
    }
    return DoSomeOne(self, r, '%');
}

#*(r) ⇒ Object

call-seq: mult(value, digits)

Multiply by the specified value.

e.g.

c = a.mult(b,n)
c = a * b
digits

If specified and less than the number of significant digits of the

result, the result is rounded to that number of digits, according to BigDecimal.mode.



1184
1185
1186
1187
1188
1189
1190
1191
1192
1193
1194
1195
1196
1197
1198
1199
1200
1201
1202
1203
1204
1205
1206
1207
1208
1209
# File 'bigdecimal.c', line 1184

static VALUE
BigDecimal_mult(VALUE self, VALUE r)
{
    ENTER(5);
    Real *c, *a, *b;
    size_t mx;

    GUARD_OBJ(a, GetVpValue(self, 1));
    if (RB_TYPE_P(r, T_FLOAT)) {
	b = GetVpValueWithPrec(r, DBL_DIG+1, 1);
    }
    else if (RB_TYPE_P(r, T_RATIONAL)) {
	b = GetVpValueWithPrec(r, a->Prec*VpBaseFig(), 1);
    }
    else {
	b = GetVpValue(r,0);
    }

    if (!b) return DoSomeOne(self, r, '*');
    SAVE(b);

    mx = a->Prec + b->Prec;
    GUARD_OBJ(c, VpCreateRbObject(mx *(VpBaseFig() + 1), "0"));
    VpMult(c, a, b);
    return ToValue(c);
}

#**(exp) ⇒ Object

It is a synonym of BigDecimal#power(exp).



2435
2436
2437
2438
2439
# File 'bigdecimal.c', line 2435

static VALUE
BigDecimal_power_op(VALUE self, VALUE exp)
{
    return BigDecimal_power(1, &exp, self);
}

#+(r) ⇒ Object

call-seq: add(value, digits)

Add the specified value.

e.g.

c = a.add(b,n)
c = a + b
digits

If specified and less than the number of significant digits of the

result, the result is rounded to that number of digits, according to BigDecimal.mode.



863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
# File 'bigdecimal.c', line 863

static VALUE
BigDecimal_add(VALUE self, VALUE r)
{
    ENTER(5);
    Real *c, *a, *b;
    size_t mx;

    GUARD_OBJ(a, GetVpValue(self, 1));
    if (RB_TYPE_P(r, T_FLOAT)) {
	b = GetVpValueWithPrec(r, DBL_DIG+1, 1);
    }
    else if (RB_TYPE_P(r, T_RATIONAL)) {
	b = GetVpValueWithPrec(r, a->Prec*VpBaseFig(), 1);
    }
    else {
	b = GetVpValue(r, 0);
    }

    if (!b) return DoSomeOne(self,r,'+');
    SAVE(b);

    if (VpIsNaN(b)) return b->obj;
    if (VpIsNaN(a)) return a->obj;

    mx = GetAddSubPrec(a, b);
    if (mx == (size_t)-1L) {
	GUARD_OBJ(c,VpCreateRbObject(VpBaseFig() + 1, "0"));
	VpAddSub(c, a, b, 1);
    }
    else {
	GUARD_OBJ(c, VpCreateRbObject(mx * (VpBaseFig() + 1), "0"));
	if(!mx) {
	    VpSetInf(c, VpGetSign(a));
	}
	else {
	    VpAddSub(c, a, b, 1);
	}
    }
    return ToValue(c);
}

#+@Object

Return self.

e.g.

b = +a  # b == a


840
841
842
843
844
# File 'bigdecimal.c', line 840

static VALUE
BigDecimal_uplus(VALUE self)
{
    return self;
}

#-(r) ⇒ Object

value - digits -> bigdecimal

Subtract the specified value.

e.g.

c = a - b

The precision of the result value depends on the type of b.

If b is a Float, the precision of the result is Float::DIG+1.

If b is a BigDecimal, the precision of the result is b‘s precision of internal representation from platform. So, it’s return value is platform dependent.



921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
# File 'bigdecimal.c', line 921

static VALUE
BigDecimal_sub(VALUE self, VALUE r)
{
    ENTER(5);
    Real *c, *a, *b;
    size_t mx;

    GUARD_OBJ(a, GetVpValue(self,1));
    if (RB_TYPE_P(r, T_FLOAT)) {
	b = GetVpValueWithPrec(r, DBL_DIG+1, 1);
    }
    else if (RB_TYPE_P(r, T_RATIONAL)) {
	b = GetVpValueWithPrec(r, a->Prec*VpBaseFig(), 1);
    }
    else {
	b = GetVpValue(r,0);
    }

    if (!b) return DoSomeOne(self,r,'-');
    SAVE(b);

    if (VpIsNaN(b)) return b->obj;
    if (VpIsNaN(a)) return a->obj;

    mx = GetAddSubPrec(a,b);
    if (mx == (size_t)-1L) {
	GUARD_OBJ(c,VpCreateRbObject(VpBaseFig() + 1, "0"));
	VpAddSub(c, a, b, -1);
    }
    else {
	GUARD_OBJ(c,VpCreateRbObject(mx *(VpBaseFig() + 1), "0"));
	if (!mx) {
	    VpSetInf(c,VpGetSign(a));
	}
	else {
	    VpAddSub(c, a, b, -1);
	}
    }
    return ToValue(c);
}

#-@Object

Return the negation of self.

e.g.

b = -a
b == a * -1


1158
1159
1160
1161
1162
1163
1164
1165
1166
1167
# File 'bigdecimal.c', line 1158

static VALUE
BigDecimal_neg(VALUE self)
{
    ENTER(5);
    Real *c, *a;
    GUARD_OBJ(a, GetVpValue(self, 1));
    GUARD_OBJ(c, VpCreateRbObject(a->Prec *(VpBaseFig() + 1), "0"));
    VpAsgn(c, a, -1);
    return ToValue(c);
}

#/Object

For c = self/r: with round operation



1264
1265
1266
1267
1268
1269
1270
1271
1272
1273
1274
1275
1276
1277
1278
1279
1280
1281
1282
# File 'bigdecimal.c', line 1264

static VALUE
BigDecimal_div(VALUE self, VALUE r)
/* For c = self/r: with round operation */
{
    ENTER(5);
    Real *c=NULL, *res=NULL, *div = NULL;
    r = BigDecimal_divide(&c, &res, &div, self, r);
    if (!NIL_P(r)) return r; /* coerced by other */
    SAVE(c); SAVE(res); SAVE(div);
    /* a/b = c + r/b */
    /* c xxxxx
       r 00000yyyyy  ==> (y/b)*BASE >= HALF_BASE
     */
    /* Round */
    if (VpHasVal(div)) { /* frac[0] must be zero for NaN,INF,Zero */
	VpInternalRound(c, 0, c->frac[c->Prec-1], (BDIGIT)(VpBaseVal() * (BDIGIT_DBL)res->frac[0] / div->frac[0]));
    }
    return ToValue(c);
}

#<(r) ⇒ Object

a < b

Returns true if a is less than b.

Values may be coerced to perform the comparison (see ==, BigDecimal#coerce).



1104
1105
1106
1107
1108
# File 'bigdecimal.c', line 1104

static VALUE
BigDecimal_lt(VALUE self, VALUE r)
{
    return BigDecimalCmp(self, r, '<');
}

#<=(r) ⇒ Object

a <= b

Returns true if a is less than or equal to b.

Values may be coerced to perform the comparison (see ==, BigDecimal#coerce).



1117
1118
1119
1120
1121
# File 'bigdecimal.c', line 1117

static VALUE
BigDecimal_le(VALUE self, VALUE r)
{
    return BigDecimalCmp(self, r, 'L');
}

#<=>(r) ⇒ Object

The comparison operator. a <=> b is 0 if a == b, 1 if a > b, -1 if a < b.



1075
1076
1077
1078
1079
# File 'bigdecimal.c', line 1075

static VALUE
BigDecimal_comp(VALUE self, VALUE r)
{
    return BigDecimalCmp(self, r, '*');
}

#==(r) ⇒ Object

Tests for value equality; returns true if the values are equal.

The == and === operators and the eql? method have the same implementation for BigDecimal.

Values may be coerced to perform the comparison:

BigDecimal.new(‘1.0’) == 1.0 -> true



1091
1092
1093
1094
1095
# File 'bigdecimal.c', line 1091

static VALUE
BigDecimal_eq(VALUE self, VALUE r)
{
    return BigDecimalCmp(self, r, '=');
}

#===(r) ⇒ Object

Tests for value equality; returns true if the values are equal.

The == and === operators and the eql? method have the same implementation for BigDecimal.

Values may be coerced to perform the comparison:

BigDecimal.new(‘1.0’) == 1.0 -> true



1091
1092
1093
1094
1095
# File 'bigdecimal.c', line 1091

static VALUE
BigDecimal_eq(VALUE self, VALUE r)
{
    return BigDecimalCmp(self, r, '=');
}

#>(r) ⇒ Object

a > b

Returns true if a is greater than b.

Values may be coerced to perform the comparison (see ==, BigDecimal#coerce).



1130
1131
1132
1133
1134
# File 'bigdecimal.c', line 1130

static VALUE
BigDecimal_gt(VALUE self, VALUE r)
{
    return BigDecimalCmp(self, r, '>');
}

#>=(r) ⇒ Object

a >= b

Returns true if a is greater than or equal to b.

Values may be coerced to perform the comparison (see ==, BigDecimal#coerce)



1143
1144
1145
1146
1147
# File 'bigdecimal.c', line 1143

static VALUE
BigDecimal_ge(VALUE self, VALUE r)
{
    return BigDecimalCmp(self, r, 'G');
}

#_dumpObject

Method used to provide marshalling support.

inf = BigDecimal.new('Infinity')
=> #<BigDecimal:1e16fa8,'Infinity',9(9)>
BigDecimal._load(inf._dump)
=> #<BigDecimal:1df8dc8,'Infinity',9(9)>

See the Marshal module.



371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
# File 'bigdecimal.c', line 371

static VALUE
BigDecimal_dump(int argc, VALUE *argv, VALUE self)
{
    ENTER(5);
    Real *vp;
    char *psz;
    VALUE dummy;
    volatile VALUE dump;

    rb_scan_args(argc, argv, "01", &dummy);
    GUARD_OBJ(vp,GetVpValue(self, 1));
    dump = rb_str_new(0, VpNumOfChars(vp, "E")+50);
    psz = RSTRING_PTR(dump);
    sprintf(psz, "%"PRIuSIZE":", VpMaxPrec(vp)*VpBaseFig());
    VpToString(vp, psz+strlen(psz), 0, 0);
    rb_str_resize(dump, strlen(psz));
    return dump;
}

#absObject

Returns the absolute value.

BigDecimal(‘5’).abs -> 5

BigDecimal(‘-3’).abs -> 3



1604
1605
1606
1607
1608
1609
1610
1611
1612
1613
1614
1615
1616
1617
# File 'bigdecimal.c', line 1604

static VALUE
BigDecimal_abs(VALUE self)
{
    ENTER(5);
    Real *c, *a;
    size_t mx;

    GUARD_OBJ(a, GetVpValue(self, 1));
    mx = a->Prec *(VpBaseFig() + 1);
    GUARD_OBJ(c, VpCreateRbObject(mx, "0"));
    VpAsgn(c, a, 1);
    VpChangeSign(c, 1);
    return ToValue(c);
}

#add(b, n) ⇒ Object

call-seq: add(value, digits)

Add the specified value.

e.g.

c = a.add(b,n)
c = a + b
digits

If specified and less than the number of significant digits of the

result, the result is rounded to that number of digits, according to BigDecimal.mode.



1533
1534
1535
1536
1537
1538
1539
1540
1541
1542
1543
1544
1545
1546
1547
1548
# File 'bigdecimal.c', line 1533

static VALUE
BigDecimal_add2(VALUE self, VALUE b, VALUE n)
{
    ENTER(2);
    Real *cv;
    SIGNED_VALUE mx = GetPositiveInt(n);
    if (mx == 0) return BigDecimal_add(self, b);
    else {
	size_t pl = VpSetPrecLimit(0);
	VALUE   c = BigDecimal_add(self, b);
	VpSetPrecLimit(pl);
	GUARD_OBJ(cv, GetVpValue(c, 1));
	VpLeftRound(cv, VpGetRoundMode(), mx);
	return ToValue(cv);
    }
}

#ceil(*args) ⇒ Object

ceil(n)

Return the smallest integer greater than or equal to the value, as a BigDecimal.

BigDecimal(‘3.14159’).ceil #=> 4 BigDecimal(‘-9.1’).ceil #=> -9

If n is specified and positive, the fractional part of the result has no more than that many digits.

If n is specified and negative, at least that many digits to the left of the decimal point will be 0 in the result.

BigDecimal(‘3.14159’).ceil(3) #=> 3.142 BigDecimal(‘13345.234’).ceil(-2) #=> 13400.0



1846
1847
1848
1849
1850
1851
1852
1853
1854
1855
1856
1857
1858
1859
1860
1861
1862
1863
1864
1865
1866
1867
1868
1869
1870
1871
# File 'bigdecimal.c', line 1846

static VALUE
BigDecimal_ceil(int argc, VALUE *argv, VALUE self)
{
    ENTER(5);
    Real *c, *a;
    int iLoc;
    VALUE vLoc;
    size_t mx, pl = VpSetPrecLimit(0);

    if (rb_scan_args(argc, argv, "01", &vLoc) == 0) {
	iLoc = 0;
    } else {
	Check_Type(vLoc, T_FIXNUM);
	iLoc = FIX2INT(vLoc);
    }

    GUARD_OBJ(a, GetVpValue(self, 1));
    mx = a->Prec * (VpBaseFig() + 1);
    GUARD_OBJ(c, VpCreateRbObject(mx, "0"));
    VpSetPrecLimit(pl);
    VpActiveRound(c, a, VP_ROUND_CEIL, iLoc);
    if (argc == 0) {
	return BigDecimal_to_i(ToValue(c));
    }
    return ToValue(c);
}

#coerce(other) ⇒ Object

The coerce method provides support for Ruby type coercion. It is not enabled by default.

This means that binary operations like + * / or - can often be performed on a BigDecimal and an object of another type, if the other object can be coerced into a BigDecimal value.

e.g. a = BigDecimal.new(“1.0”) b = a / 2.0 -> 0.5

Note that coercing a String to a BigDecimal is not supported by default; it requires a special compile-time option when building Ruby.



807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
# File 'bigdecimal.c', line 807

static VALUE
BigDecimal_coerce(VALUE self, VALUE other)
{
    ENTER(2);
    VALUE obj;
    Real *b;

    if (RB_TYPE_P(other, T_FLOAT)) {
	GUARD_OBJ(b, GetVpValueWithPrec(other, DBL_DIG+1, 1));
	obj = rb_assoc_new(ToValue(b), self);
    }
    else {
	if (RB_TYPE_P(other, T_RATIONAL)) {
	    Real* pv = DATA_PTR(self);
	    GUARD_OBJ(b, GetVpValueWithPrec(other, pv->Prec*VpBaseFig(), 1));
	}
	else {
	    GUARD_OBJ(b, GetVpValue(other, 1));
	}
	obj = rb_assoc_new(b->obj, self);
    }

    return obj;
}

#div(*args) ⇒ Object



1523
1524
1525
1526
1527
1528
1529
1530
1531
# File 'bigdecimal.c', line 1523

static VALUE
BigDecimal_div3(int argc, VALUE *argv, VALUE self)
{
    VALUE b,n;

    rb_scan_args(argc, argv, "11", &b, &n);

    return BigDecimal_div2(self, b, n);
}

#divmod(r) ⇒ Object

Divides by the specified value, and returns the quotient and modulus as BigDecimal numbers. The quotient is rounded towards negative infinity.

For example:

require ‘bigdecimal’

a = BigDecimal.new(“42”) b = BigDecimal.new(“9”)

q,m = a.divmod(b)

c = q * b + m

a == c -> true

The quotient q is (a/b).floor, and the modulus is the amount that must be added to q * b to get a.



1468
1469
1470
1471
1472
1473
1474
1475
1476
1477
1478
1479
# File 'bigdecimal.c', line 1468

static VALUE
BigDecimal_divmod(VALUE self, VALUE r)
{
    ENTER(5);
    Real *div = NULL, *mod = NULL;

    if (BigDecimal_DoDivmod(self, r, &div, &mod)) {
	SAVE(div); SAVE(mod);
	return rb_assoc_new(ToValue(div), ToValue(mod));
    }
    return DoSomeOne(self,r,rb_intern("divmod"));
}

#eql?(r) ⇒ Boolean

Tests for value equality; returns true if the values are equal.

The == and === operators and the eql? method have the same implementation for BigDecimal.

Values may be coerced to perform the comparison:

BigDecimal.new(‘1.0’) == 1.0 -> true

Returns:

  • (Boolean)


1091
1092
1093
1094
1095
# File 'bigdecimal.c', line 1091

static VALUE
BigDecimal_eq(VALUE self, VALUE r)
{
    return BigDecimalCmp(self, r, '=');
}

#exponentObject

Returns the exponent of the BigDecimal number, as an Integer.

If the number can be represented as 0.xxxxxx*10**n where xxxxxx is a string of digits with no leading zeros, then n is the exponent.



2034
2035
2036
2037
2038
2039
# File 'bigdecimal.c', line 2034

static VALUE
BigDecimal_exponent(VALUE self)
{
    ssize_t e = VpExponent10(GetVpValue(self, 1));
    return INT2NUM(e);
}

#finite?Boolean

Returns True if the value is finite (not NaN or infinite)

Returns:

  • (Boolean)


638
639
640
641
642
643
644
645
# File 'bigdecimal.c', line 638

static VALUE
BigDecimal_IsFinite(VALUE self)
{
    Real *p = GetVpValue(self, 1);
    if (VpIsNaN(p)) return Qfalse;
    if (VpIsInf(p)) return Qfalse;
    return Qtrue;
}

#fixObject

Return the integer part of the number.



1645
1646
1647
1648
1649
1650
1651
1652
1653
1654
1655
1656
1657
# File 'bigdecimal.c', line 1645

static VALUE
BigDecimal_fix(VALUE self)
{
    ENTER(5);
    Real *c, *a;
    size_t mx;

    GUARD_OBJ(a, GetVpValue(self, 1));
    mx = a->Prec *(VpBaseFig() + 1);
    GUARD_OBJ(c, VpCreateRbObject(mx, "0"));
    VpActiveRound(c, a, VP_ROUND_DOWN, 0); /* 0: round off */
    return ToValue(c);
}

#floor(*args) ⇒ Object

floor(n)

Return the largest integer less than or equal to the value, as a BigDecimal.

BigDecimal(‘3.14159’).floor #=> 3 BigDecimal(‘-9.1’).floor #=> -10

If n is specified and positive, the fractional part of the result has no more than that many digits.

If n is specified and negative, at least that many digits to the left of the decimal point will be 0 in the result.

BigDecimal(‘3.14159’).floor(3) #=> 3.141 BigDecimal(‘13345.234’).floor(-2) #=> 13300.0



1798
1799
1800
1801
1802
1803
1804
1805
1806
1807
1808
1809
1810
1811
1812
1813
1814
1815
1816
1817
1818
1819
1820
1821
1822
1823
1824
1825
1826
1827
# File 'bigdecimal.c', line 1798

static VALUE
BigDecimal_floor(int argc, VALUE *argv, VALUE self)
{
    ENTER(5);
    Real *c, *a;
    int iLoc;
    VALUE vLoc;
    size_t mx, pl = VpSetPrecLimit(0);

    if (rb_scan_args(argc, argv, "01", &vLoc)==0) {
	iLoc = 0;
    }
    else {
	Check_Type(vLoc, T_FIXNUM);
	iLoc = FIX2INT(vLoc);
    }

    GUARD_OBJ(a, GetVpValue(self, 1));
    mx = a->Prec * (VpBaseFig() + 1);
    GUARD_OBJ(c, VpCreateRbObject(mx, "0"));
    VpSetPrecLimit(pl);
    VpActiveRound(c, a, VP_ROUND_FLOOR, iLoc);
#ifdef BIGDECIMAL_DEBUG
    VPrint(stderr, "floor: c=%\n", c);
#endif
    if (argc == 0) {
	return BigDecimal_to_i(ToValue(c));
    }
    return ToValue(c);
}

#fracObject

Return the fractional part of the number.



1767
1768
1769
1770
1771
1772
1773
1774
1775
1776
1777
1778
1779
# File 'bigdecimal.c', line 1767

static VALUE
BigDecimal_frac(VALUE self)
{
    ENTER(5);
    Real *c, *a;
    size_t mx;

    GUARD_OBJ(a, GetVpValue(self, 1));
    mx = a->Prec * (VpBaseFig() + 1);
    GUARD_OBJ(c, VpCreateRbObject(mx, "0"));
    VpFrac(c, a);
    return ToValue(c);
}

#hashObject

Creates a hash for this BigDecimal.

Two BigDecimals with equal sign, fractional part and exponent have the same hash.



342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
# File 'bigdecimal.c', line 342

static VALUE
BigDecimal_hash(VALUE self)
{
    ENTER(1);
    Real *p;
    st_index_t hash;

    GUARD_OBJ(p, GetVpValue(self, 1));
    hash = (st_index_t)p->sign;
    /* hash!=2: the case for 0(1),NaN(0) or +-Infinity(3) is sign itself */
    if(hash == 2 || hash == (st_index_t)-2) {
	hash ^= rb_memhash(p->frac, sizeof(BDIGIT)*p->Prec);
	hash += p->exponent;
    }
    return INT2FIX(hash);
}

#infinite?Boolean

Returns nil, -1, or 1 depending on whether the value is finite, -Infinity, or Infinity.

Returns:

  • (Boolean)


628
629
630
631
632
633
634
635
# File 'bigdecimal.c', line 628

static VALUE
BigDecimal_IsInfinite(VALUE self)
{
    Real *p = GetVpValue(self, 1);
    if (VpIsPosInf(p)) return INT2FIX(1);
    if (VpIsNegInf(p)) return INT2FIX(-1);
    return Qnil;
}

#initialize_copy(other) ⇒ Object

:nodoc:

private method to dup and clone the provided BigDecimal other



2504
2505
2506
2507
2508
2509
2510
2511
2512
2513
2514
# File 'bigdecimal.c', line 2504

static VALUE
BigDecimal_initialize_copy(VALUE self, VALUE other)
{
    Real *pv = rb_check_typeddata(self, &BigDecimal_data_type);
    Real *x = rb_check_typeddata(other, &BigDecimal_data_type);

    if (self != other) {
	DATA_PTR(self) = VpCopy(pv, x);
    }
    return self;
}

#inspectObject

Returns debugging information about the value as a string of comma-separated values in angle brackets with a leading #:

BigDecimal.new(“1234.5678”).inspect -> “#<BigDecimal:b7ea1130,‘0.12345678E4’,8(12)>”

The first part is the address, the second is the value as a string, and the final part ss(mm) is the current number of significant digits and the maximum number of significant digits, respectively.



2051
2052
2053
2054
2055
2056
2057
2058
2059
2060
2061
2062
2063
2064
2065
2066
2067
2068
2069
2070
2071
2072
2073
# File 'bigdecimal.c', line 2051

static VALUE
BigDecimal_inspect(VALUE self)
{
    ENTER(5);
    Real *vp;
    volatile VALUE obj;
    size_t nc;
    char *psz, *tmp;

    GUARD_OBJ(vp, GetVpValue(self, 1));
    nc = VpNumOfChars(vp, "E");
    nc += (nc + 9) / 10;

    obj = rb_str_new(0, nc+256);
    psz = RSTRING_PTR(obj);
    sprintf(psz, "#<BigDecimal:%"PRIxVALUE",'", self);
    tmp = psz + strlen(psz);
    VpToString(vp, tmp, 10, 0);
    tmp += strlen(tmp);
    sprintf(tmp, "',%"PRIuSIZE"(%"PRIuSIZE")>", VpPrec(vp)*VpBaseFig(), VpMaxPrec(vp)*VpBaseFig());
    rb_str_resize(obj, strlen(psz));
    return obj;
}

#moduloObject

%: a%b = a - (a.to_f/b).floor * b



1376
1377
1378
1379
1380
1381
1382
1383
1384
1385
1386
1387
# File 'bigdecimal.c', line 1376

static VALUE
BigDecimal_mod(VALUE self, VALUE r) /* %: a%b = a - (a.to_f/b).floor * b */
{
    ENTER(3);
    Real *div = NULL, *mod = NULL;

    if (BigDecimal_DoDivmod(self, r, &div, &mod)) {
	SAVE(div); SAVE(mod);
	return ToValue(mod);
    }
    return DoSomeOne(self, r, '%');
}

#mult(b, n) ⇒ Object

call-seq: mult(value, digits)

Multiply by the specified value.

e.g.

c = a.mult(b,n)
c = a * b
digits

If specified and less than the number of significant digits of the

result, the result is rounded to that number of digits, according to BigDecimal.mode.



1581
1582
1583
1584
1585
1586
1587
1588
1589
1590
1591
1592
1593
1594
1595
1596
# File 'bigdecimal.c', line 1581

static VALUE
BigDecimal_mult2(VALUE self, VALUE b, VALUE n)
{
    ENTER(2);
    Real *cv;
    SIGNED_VALUE mx = GetPositiveInt(n);
    if (mx == 0) return BigDecimal_mult(self, b);
    else {
	size_t pl = VpSetPrecLimit(0);
	VALUE   c = BigDecimal_mult(self, b);
	VpSetPrecLimit(pl);
	GUARD_OBJ(cv, GetVpValue(c, 1));
	VpLeftRound(cv, VpGetRoundMode(), mx);
	return ToValue(cv);
    }
}

#nan?Boolean

Returns True if the value is Not a Number

Returns:

  • (Boolean)


617
618
619
620
621
622
623
# File 'bigdecimal.c', line 617

static VALUE
BigDecimal_IsNaN(VALUE self)
{
    Real *p = GetVpValue(self, 1);
    if (VpIsNaN(p))  return Qtrue;
    return Qfalse;
}

#nonzero?Boolean

Returns self if the value is non-zero, nil otherwise.

Returns:

  • (Boolean)


1065
1066
1067
1068
1069
1070
# File 'bigdecimal.c', line 1065

static VALUE
BigDecimal_nonzero(VALUE self)
{
    Real *a = GetVpValue(self, 1);
    return VpIsZero(a) ? Qnil : self;
}

#power(*args) ⇒ Object

power(n) power(n, prec)

Returns the value raised to the power of n.

Note that n must be an Integer.

Also available as the operator **



2201
2202
2203
2204
2205
2206
2207
2208
2209
2210
2211
2212
2213
2214
2215
2216
2217
2218
2219
2220
2221
2222
2223
2224
2225
2226
2227
2228
2229
2230
2231
2232
2233
2234
2235
2236
2237
2238
2239
2240
2241
2242
2243
2244
2245
2246
2247
2248
2249
2250
2251
2252
2253
2254
2255
2256
2257
2258
2259
2260
2261
2262
2263
2264
2265
2266
2267
2268
2269
2270
2271
2272
2273
2274
2275
2276
2277
2278
2279
2280
2281
2282
2283
2284
2285
2286
2287
2288
2289
2290
2291
2292
2293
2294
2295
2296
2297
2298
2299
2300
2301
2302
2303
2304
2305
2306
2307
2308
2309
2310
2311
2312
2313
2314
2315
2316
2317
2318
2319
2320
2321
2322
2323
2324
2325
2326
2327
2328
2329
2330
2331
2332
2333
2334
2335
2336
2337
2338
2339
2340
2341
2342
2343
2344
2345
2346
2347
2348
2349
2350
2351
2352
2353
2354
2355
2356
2357
2358
2359
2360
2361
2362
2363
2364
2365
2366
2367
2368
2369
2370
2371
2372
2373
2374
2375
2376
2377
2378
2379
2380
2381
2382
2383
2384
2385
2386
2387
2388
2389
2390
2391
2392
2393
2394
2395
2396
2397
2398
2399
2400
2401
2402
2403
2404
2405
2406
2407
2408
2409
2410
2411
2412
2413
2414
2415
2416
2417
2418
2419
2420
2421
2422
2423
2424
2425
2426
2427
2428
# File 'bigdecimal.c', line 2201

static VALUE
BigDecimal_power(int argc, VALUE*argv, VALUE self)
{
    ENTER(5);
    VALUE vexp, prec;
    Real* exp = NULL;
    Real *x, *y;
    ssize_t mp, ma, n;
    SIGNED_VALUE int_exp;
    double d;

    rb_scan_args(argc, argv, "11", &vexp, &prec);

    GUARD_OBJ(x, GetVpValue(self, 1));
    n = NIL_P(prec) ? (ssize_t)(x->Prec*VpBaseFig()) : NUM2SSIZET(prec);

    if (VpIsNaN(x)) {
	y = VpCreateRbObject(n, "0#");
	RB_GC_GUARD(y->obj);
	VpSetNaN(y);
	return ToValue(y);
    }

  retry:
    switch (TYPE(vexp)) {
      case T_FIXNUM:
	break;

      case T_BIGNUM:
	break;

      case T_FLOAT:
	d = RFLOAT_VALUE(vexp);
	if (d == round(d)) {
	    if (FIXABLE(d)) {
		vexp = LONG2FIX((long)d);
	    }
	    else {
		vexp = rb_dbl2big(d);
	    }
	    goto retry;
	}
	exp = GetVpValueWithPrec(vexp, DBL_DIG+1, 1);
	break;

      case T_RATIONAL:
	if (is_zero(rb_rational_num(vexp))) {
	    if (is_positive(vexp)) {
		vexp = INT2FIX(0);
		goto retry;
	    }
	}
	else if (is_one(rb_rational_den(vexp))) {
	    vexp = rb_rational_num(vexp);
	    goto retry;
	}
	exp = GetVpValueWithPrec(vexp, n, 1);
	break;

      case T_DATA:
	if (is_kind_of_BigDecimal(vexp)) {
	    VALUE zero = INT2FIX(0);
	    VALUE rounded = BigDecimal_round(1, &zero, vexp);
	    if (RTEST(BigDecimal_eq(vexp, rounded))) {
		vexp = BigDecimal_to_i(vexp);
		goto retry;
	    }
	    exp = DATA_PTR(vexp);
	    break;
	}
	/* fall through */
      default:
	rb_raise(rb_eTypeError,
		 "wrong argument type %"PRIsVALUE" (expected scalar Numeric)",
		 RB_OBJ_CLASSNAME(vexp));
    }

    if (VpIsZero(x)) {
	if (is_negative(vexp)) {
	    y = VpCreateRbObject(n, "#0");
	    RB_GC_GUARD(y->obj);
	    if (VpGetSign(x) < 0) {
		if (is_integer(vexp)) {
		    if (is_even(vexp)) {
			/* (-0) ** (-even_integer)  -> Infinity */
			VpSetPosInf(y);
		    }
		    else {
			/* (-0) ** (-odd_integer)  -> -Infinity */
			VpSetNegInf(y);
		    }
		}
		else {
		    /* (-0) ** (-non_integer)  -> Infinity */
		    VpSetPosInf(y);
		}
	    }
	    else {
		/* (+0) ** (-num)  -> Infinity */
		VpSetPosInf(y);
	    }
	    return ToValue(y);
	}
	else if (is_zero(vexp)) {
	    return ToValue(VpCreateRbObject(n, "1"));
	}
	else {
	    return ToValue(VpCreateRbObject(n, "0"));
	}
    }

    if (is_zero(vexp)) {
	return ToValue(VpCreateRbObject(n, "1"));
    }
    else if (is_one(vexp)) {
	return self;
    }

    if (VpIsInf(x)) {
	if (is_negative(vexp)) {
	    if (VpGetSign(x) < 0) {
		if (is_integer(vexp)) {
		    if (is_even(vexp)) {
			/* (-Infinity) ** (-even_integer) -> +0 */
			return ToValue(VpCreateRbObject(n, "0"));
		    }
		    else {
			/* (-Infinity) ** (-odd_integer) -> -0 */
			return ToValue(VpCreateRbObject(n, "-0"));
		    }
		}
		else {
		    /* (-Infinity) ** (-non_integer) -> -0 */
		    return ToValue(VpCreateRbObject(n, "-0"));
		}
	    }
	    else {
		return ToValue(VpCreateRbObject(n, "0"));
	    }
	}
	else {
	    y = VpCreateRbObject(n, "0#");
	    if (VpGetSign(x) < 0) {
		if (is_integer(vexp)) {
		    if (is_even(vexp)) {
			VpSetPosInf(y);
		    }
		    else {
			VpSetNegInf(y);
		    }
		}
		else {
		    /* TODO: support complex */
		    rb_raise(rb_eMathDomainError,
			     "a non-integral exponent for a negative base");
		}
	    }
	    else {
		VpSetPosInf(y);
	    }
	    return ToValue(y);
	}
    }

    if (exp != NULL) {
	return rmpd_power_by_big_decimal(x, exp, n);
    }
    else if (RB_TYPE_P(vexp, T_BIGNUM)) {
	VALUE abs_value = BigDecimal_abs(self);
	if (is_one(abs_value)) {
	    return ToValue(VpCreateRbObject(n, "1"));
	}
	else if (RTEST(rb_funcall(abs_value, '<', 1, INT2FIX(1)))) {
	    if (is_negative(vexp)) {
		y = VpCreateRbObject(n, "0#");
		if (is_even(vexp)) {
		    VpSetInf(y, VpGetSign(x));
		}
		else {
		    VpSetInf(y, -VpGetSign(x));
		}
		return ToValue(y);
	    }
	    else if (VpGetSign(x) < 0 && is_even(vexp)) {
		return ToValue(VpCreateRbObject(n, "-0"));
	    }
	    else {
		return ToValue(VpCreateRbObject(n, "0"));
	    }
	}
	else {
	    if (is_positive(vexp)) {
		y = VpCreateRbObject(n, "0#");
		if (is_even(vexp)) {
		    VpSetInf(y, VpGetSign(x));
		}
		else {
		    VpSetInf(y, -VpGetSign(x));
		}
		return ToValue(y);
	    }
	    else if (VpGetSign(x) < 0 && is_even(vexp)) {
		return ToValue(VpCreateRbObject(n, "-0"));
	    }
	    else {
		return ToValue(VpCreateRbObject(n, "0"));
	    }
	}
    }

    int_exp = FIX2LONG(vexp);
    ma = int_exp;
    if (ma <  0) ma = -ma;
    if (ma == 0) ma = 1;

    if (VpIsDef(x)) {
	mp = x->Prec * (VpBaseFig() + 1);
	GUARD_OBJ(y, VpCreateRbObject(mp * (ma + 1), "0"));
    }
    else {
	GUARD_OBJ(y, VpCreateRbObject(1, "0"));
    }
    VpPower(y, x, int_exp);
    if (!NIL_P(prec) && VpIsDef(y)) {
	VpMidRound(y, VpGetRoundMode(), n);
    }
    return ToValue(y);
}

#precsObject

precs

Returns an Array of two Integer values.

The first value is the current number of significant digits in the BigDecimal. The second value is the maximum number of significant digits for the BigDecimal.



321
322
323
324
325
326
327
328
329
330
331
332
# File 'bigdecimal.c', line 321

static VALUE
BigDecimal_prec(VALUE self)
{
    ENTER(1);
    Real *p;
    VALUE obj;

    GUARD_OBJ(p, GetVpValue(self, 1));
    obj = rb_assoc_new(INT2NUM(p->Prec*VpBaseFig()),
		       INT2NUM(p->MaxPrec*VpBaseFig()));
    return obj;
}

#quoObject

For c = self/r: with round operation



1264
1265
1266
1267
1268
1269
1270
1271
1272
1273
1274
1275
1276
1277
1278
1279
1280
1281
1282
# File 'bigdecimal.c', line 1264

static VALUE
BigDecimal_div(VALUE self, VALUE r)
/* For c = self/r: with round operation */
{
    ENTER(5);
    Real *c=NULL, *res=NULL, *div = NULL;
    r = BigDecimal_divide(&c, &res, &div, self, r);
    if (!NIL_P(r)) return r; /* coerced by other */
    SAVE(c); SAVE(res); SAVE(div);
    /* a/b = c + r/b */
    /* c xxxxx
       r 00000yyyyy  ==> (y/b)*BASE >= HALF_BASE
     */
    /* Round */
    if (VpHasVal(div)) { /* frac[0] must be zero for NaN,INF,Zero */
	VpInternalRound(c, 0, c->frac[c->Prec-1], (BDIGIT)(VpBaseVal() * (BDIGIT_DBL)res->frac[0] / div->frac[0]));
    }
    return ToValue(c);
}

#remainderObject

remainder



1439
1440
1441
1442
1443
1444
1445
1446
1447
# File 'bigdecimal.c', line 1439

static VALUE
BigDecimal_remainder(VALUE self, VALUE r) /* remainder */
{
    VALUE  f;
    Real  *d, *rv = 0;
    f = BigDecimal_divremain(self, r, &d, &rv);
    if (!NIL_P(f)) return f;
    return ToValue(rv);
}

#round(*args) ⇒ Object

round(n, mode)

Round to the nearest 1 (by default), returning the result as a BigDecimal.

BigDecimal(‘3.14159’).round #=> 3 BigDecimal(‘8.7’).round #=> 9

If n is specified and positive, the fractional part of the result has no more than that many digits.

If n is specified and negative, at least that many digits to the left of the decimal point will be 0 in the result.

BigDecimal(‘3.14159’).round(3) #=> 3.142 BigDecimal(‘13345.234’).round(-2) #=> 13300.0

The value of the optional mode argument can be used to determine how rounding is performed; see BigDecimal.mode.



1679
1680
1681
1682
1683
1684
1685
1686
1687
1688
1689
1690
1691
1692
1693
1694
1695
1696
1697
1698
1699
1700
1701
1702
1703
1704
1705
1706
1707
1708
1709
1710
1711
1712
1713
1714
1715
1716
1717
1718
# File 'bigdecimal.c', line 1679

static VALUE
BigDecimal_round(int argc, VALUE *argv, VALUE self)
{
    ENTER(5);
    Real   *c, *a;
    int    iLoc = 0;
    VALUE  vLoc;
    VALUE  vRound;
    size_t mx, pl;

    unsigned short sw = VpGetRoundMode();

    switch (rb_scan_args(argc, argv, "02", &vLoc, &vRound)) {
      case 0:
	iLoc = 0;
	break;
      case 1:
	Check_Type(vLoc, T_FIXNUM);
	iLoc = FIX2INT(vLoc);
	break;
      case 2:
	Check_Type(vLoc, T_FIXNUM);
	iLoc = FIX2INT(vLoc);
	sw = check_rounding_mode(vRound);
	break;
      default:
	break;
    }

    pl = VpSetPrecLimit(0);
    GUARD_OBJ(a, GetVpValue(self, 1));
    mx = a->Prec * (VpBaseFig() + 1);
    GUARD_OBJ(c, VpCreateRbObject(mx, "0"));
    VpSetPrecLimit(pl);
    VpActiveRound(c, a, sw, iLoc);
    if (argc == 0) {
	return BigDecimal_to_i(ToValue(c));
    }
    return ToValue(c);
}

#signObject

Returns the sign of the value.

Returns a positive value if > 0, a negative value if < 0, and a zero if == 0.

The specific value returned indicates the type and sign of the BigDecimal, as follows:

BigDecimal::SIGN_NaN

value is Not a Number

BigDecimal::SIGN_POSITIVE_ZERO

value is +0

BigDecimal::SIGN_NEGATIVE_ZERO

value is -0

BigDecimal::SIGN_POSITIVE_INFINITE

value is +Infinity

BigDecimal::SIGN_NEGATIVE_INFINITE

value is -Infinity

BigDecimal::SIGN_POSITIVE_FINITE

value is positive

BigDecimal::SIGN_NEGATIVE_FINITE

value is negative



2624
2625
2626
2627
2628
2629
# File 'bigdecimal.c', line 2624

static VALUE
BigDecimal_sign(VALUE self)
{ /* sign */
    int s = GetVpValue(self, 1)->sign;
    return INT2FIX(s);
}

#splitObject

Splits a BigDecimal number into four parts, returned as an array of values.

The first value represents the sign of the BigDecimal, and is -1 or 1, or 0 if the BigDecimal is Not a Number.

The second value is a string representing the significant digits of the BigDecimal, with no leading zeros.

The third value is the base used for arithmetic (currently always 10) as an Integer.

The fourth value is an Integer exponent.

If the BigDecimal can be represented as 0.xxxxxx*10**n, then xxxxxx is the string of significant digits with no leading zeros, and n is the exponent.

From these values, you can translate a BigDecimal to a float as follows:

sign, significant_digits, base, exponent = a.split
f = sign * "0.#{significant_digits}".to_f * (base ** exponent)

(Note that the to_f method is provided as a more convenient way to translate a BigDecimal to a Float.)



1997
1998
1999
2000
2001
2002
2003
2004
2005
2006
2007
2008
2009
2010
2011
2012
2013
2014
2015
2016
2017
2018
2019
2020
2021
2022
2023
2024
2025
2026
2027
# File 'bigdecimal.c', line 1997

static VALUE
BigDecimal_split(VALUE self)
{
    ENTER(5);
    Real *vp;
    VALUE obj,str;
    ssize_t e, s;
    char *psz1;

    GUARD_OBJ(vp, GetVpValue(self, 1));
    str = rb_str_new(0, VpNumOfChars(vp, "E"));
    psz1 = RSTRING_PTR(str);
    VpSzMantissa(vp, psz1);
    s = 1;
    if(psz1[0] == '-') {
	size_t len = strlen(psz1 + 1);

	memmove(psz1, psz1 + 1, len);
	psz1[len] = '\0';
        s = -1;
    }
    if (psz1[0] == 'N') s = 0; /* NaN */
    e = VpExponent10(vp);
    obj = rb_ary_new2(4);
    rb_ary_push(obj, INT2FIX(s));
    rb_ary_push(obj, str);
    rb_str_resize(str, strlen(psz1));
    rb_ary_push(obj, INT2FIX(10));
    rb_ary_push(obj, INT2NUM(e));
    return obj;
}

#sqrt(nFig) ⇒ Object

sqrt(n)

Returns the square root of the value.

Result has at least n significant digits.



1626
1627
1628
1629
1630
1631
1632
1633
1634
1635
1636
1637
1638
1639
1640
1641
# File 'bigdecimal.c', line 1626

static VALUE
BigDecimal_sqrt(VALUE self, VALUE nFig)
{
    ENTER(5);
    Real *c, *a;
    size_t mx, n;

    GUARD_OBJ(a, GetVpValue(self, 1));
    mx = a->Prec * (VpBaseFig() + 1);

    n = GetPositiveInt(nFig) + VpDblFig() + BASE_FIG;
    if (mx <= n) mx = n;
    GUARD_OBJ(c, VpCreateRbObject(mx, "0"));
    VpSqrt(c, a);
    return ToValue(c);
}

#sub(b, n) ⇒ Object

sub(value, digits) -> bigdecimal

Subtract the specified value.

e.g.

c = a.sub(b,n)
digits

If specified and less than the number of significant digits of the

result, the result is rounded to that number of digits, according to BigDecimal.mode.



1563
1564
1565
1566
1567
1568
1569
1570
1571
1572
1573
1574
1575
1576
1577
1578
# File 'bigdecimal.c', line 1563

static VALUE
BigDecimal_sub2(VALUE self, VALUE b, VALUE n)
{
    ENTER(2);
    Real *cv;
    SIGNED_VALUE mx = GetPositiveInt(n);
    if (mx == 0) return BigDecimal_sub(self, b);
    else {
	size_t pl = VpSetPrecLimit(0);
	VALUE   c = BigDecimal_sub(self, b);
	VpSetPrecLimit(pl);
	GUARD_OBJ(cv, GetVpValue(c, 1));
	VpLeftRound(cv, VpGetRoundMode(), mx);
	return ToValue(cv);
    }
}

#to_dObject

call-seq:

a.to_d -> bigdecimal

Returns self.



96
97
98
# File 'lib/bigdecimal/util.rb', line 96

def to_d
  self
end

#to_digitsObject

call-seq:

a.to_digits -> string

Converts a BigDecimal to a String of the form “nnnnnn.mmm”. This method is deprecated; use BigDecimal#to_s(“F”) instead.

require 'bigdecimal'
require 'bigdecimal/util'

d = BigDecimal.new("3.14")
d.to_digits
# => "3.14"


82
83
84
85
86
87
88
89
90
# File 'lib/bigdecimal/util.rb', line 82

def to_digits
  if self.nan? || self.infinite? || self.zero?
    self.to_s
  else
    i       = self.to_i.to_s
    _,f,_,z = self.frac.split
    i + "." + ("0"*(-z)) + f
  end
end

#to_fObject

Returns a new Float object having approximately the same value as the BigDecimal number. Normal accuracy limits and built-in errors of binary Float arithmetic apply.



714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
# File 'bigdecimal.c', line 714

static VALUE
BigDecimal_to_f(VALUE self)
{
    ENTER(1);
    Real *p;
    double d;
    SIGNED_VALUE e;
    char *buf;
    volatile VALUE str;

    GUARD_OBJ(p, GetVpValue(self, 1));
    if (VpVtoD(&d, &e, p) != 1)
	return rb_float_new(d);
    if (e > (SIGNED_VALUE)(DBL_MAX_10_EXP+BASE_FIG))
	goto overflow;
    if (e < (SIGNED_VALUE)(DBL_MIN_10_EXP-BASE_FIG))
	goto underflow;

    str = rb_str_new(0, VpNumOfChars(p, "E"));
    buf = RSTRING_PTR(str);
    VpToString(p, buf, 0, 0);
    errno = 0;
    d = strtod(buf, 0);
    if (errno == ERANGE) {
	if (d == 0.0) goto underflow;
	if (fabs(d) >= HUGE_VAL) goto overflow;
    }
    return rb_float_new(d);

overflow:
    VpException(VP_EXCEPTION_OVERFLOW, "BigDecimal to Float conversion", 0);
    if (p->sign >= 0)
	return rb_float_new(VpGetDoublePosInf());
    else
	return rb_float_new(VpGetDoubleNegInf());

underflow:
    VpException(VP_EXCEPTION_UNDERFLOW, "BigDecimal to Float conversion", 0);
    if (p->sign >= 0)
	return rb_float_new(0.0);
    else
	return rb_float_new(-0.0);
}

#to_iObject

Returns the value as an integer (Fixnum or Bignum).

If the BigNumber is infinity or NaN, raises FloatDomainError.



667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
# File 'bigdecimal.c', line 667

static VALUE
BigDecimal_to_i(VALUE self)
{
    ENTER(5);
    ssize_t e, nf;
    Real *p;

    GUARD_OBJ(p, GetVpValue(self, 1));
    BigDecimal_check_num(p);

    e = VpExponent10(p);
    if (e <= 0) return INT2FIX(0);
    nf = VpBaseFig();
    if (e <= nf) {
        return LONG2NUM((long)(VpGetSign(p) * (BDIGIT_DBL_SIGNED)p->frac[0]));
    }
    else {
	VALUE a = BigDecimal_split(self);
	VALUE digits = RARRAY_PTR(a)[1];
	VALUE numerator = rb_funcall(digits, rb_intern("to_i"), 0);
	VALUE ret;
	ssize_t dpower = e - (ssize_t)RSTRING_LEN(digits);

	if (VpGetSign(p) < 0) {
	    numerator = rb_funcall(numerator, '*', 1, INT2FIX(-1));
	}
	if (dpower < 0) {
	    ret = rb_funcall(numerator, rb_intern("div"), 1,
			      rb_funcall(INT2FIX(10), rb_intern("**"), 1,
					 INT2FIX(-dpower)));
	}
	else {
	    ret = rb_funcall(numerator, '*', 1,
			     rb_funcall(INT2FIX(10), rb_intern("**"), 1,
					INT2FIX(dpower)));
	}
	if (RB_TYPE_P(ret, T_FLOAT)) {
	    rb_raise(rb_eFloatDomainError, "Infinity");
	}
	return ret;
    }
}

#to_intObject

Returns the value as an integer (Fixnum or Bignum).

If the BigNumber is infinity or NaN, raises FloatDomainError.



667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
# File 'bigdecimal.c', line 667

static VALUE
BigDecimal_to_i(VALUE self)
{
    ENTER(5);
    ssize_t e, nf;
    Real *p;

    GUARD_OBJ(p, GetVpValue(self, 1));
    BigDecimal_check_num(p);

    e = VpExponent10(p);
    if (e <= 0) return INT2FIX(0);
    nf = VpBaseFig();
    if (e <= nf) {
        return LONG2NUM((long)(VpGetSign(p) * (BDIGIT_DBL_SIGNED)p->frac[0]));
    }
    else {
	VALUE a = BigDecimal_split(self);
	VALUE digits = RARRAY_PTR(a)[1];
	VALUE numerator = rb_funcall(digits, rb_intern("to_i"), 0);
	VALUE ret;
	ssize_t dpower = e - (ssize_t)RSTRING_LEN(digits);

	if (VpGetSign(p) < 0) {
	    numerator = rb_funcall(numerator, '*', 1, INT2FIX(-1));
	}
	if (dpower < 0) {
	    ret = rb_funcall(numerator, rb_intern("div"), 1,
			      rb_funcall(INT2FIX(10), rb_intern("**"), 1,
					 INT2FIX(-dpower)));
	}
	else {
	    ret = rb_funcall(numerator, '*', 1,
			     rb_funcall(INT2FIX(10), rb_intern("**"), 1,
					INT2FIX(dpower)));
	}
	if (RB_TYPE_P(ret, T_FLOAT)) {
	    rb_raise(rb_eFloatDomainError, "Infinity");
	}
	return ret;
    }
}

#to_rObject

Converts a BigDecimal to a Rational.



761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
# File 'bigdecimal.c', line 761

static VALUE
BigDecimal_to_r(VALUE self)
{
    Real *p;
    ssize_t sign, power, denomi_power;
    VALUE a, digits, numerator;

    p = GetVpValue(self, 1);
    BigDecimal_check_num(p);

    sign = VpGetSign(p);
    power = VpExponent10(p);
    a = BigDecimal_split(self);
    digits = RARRAY_PTR(a)[1];
    denomi_power = power - RSTRING_LEN(digits);
    numerator = rb_funcall(digits, rb_intern("to_i"), 0);

    if (sign < 0) {
	numerator = rb_funcall(numerator, '*', 1, INT2FIX(-1));
    }
    if (denomi_power < 0) {
	return rb_Rational(numerator,
			   rb_funcall(INT2FIX(10), rb_intern("**"), 1,
				      INT2FIX(-denomi_power)));
    }
    else {
	return rb_Rational1(rb_funcall(numerator, '*', 1,
				       rb_funcall(INT2FIX(10), rb_intern("**"), 1,
						  INT2FIX(denomi_power))));
    }
}

#to_s(*args) ⇒ Object

to_s(s)

Converts the value to a string.

The default format looks like 0.xxxxEnn.

The optional parameter s consists of either an integer; or an optional ‘+’ or ‘ ’, followed by an optional number, followed by an optional ‘E’ or ‘F’.

If there is a ‘+’ at the start of s, positive values are returned with a leading ‘+’.

A space at the start of s returns positive values with a leading space.

If s contains a number, a space is inserted after each group of that many fractional digits.

If s ends with an ‘E’, engineering notation (0.xxxxEnn) is used.

If s ends with an ‘F’, conventional floating point notation is used.

Examples:

BigDecimal.new(‘-123.45678901234567890’).to_s(‘5F’)

#=> '-123.45678 90123 45678 9'

BigDecimal.new(‘123.45678901234567890’).to_s(‘+8F’)

#=> '+123.45678901 23456789'

BigDecimal.new(‘123.45678901234567890’).to_s(‘ F’)

#=> ' 123.4567890123456789'


1906
1907
1908
1909
1910
1911
1912
1913
1914
1915
1916
1917
1918
1919
1920
1921
1922
1923
1924
1925
1926
1927
1928
1929
1930
1931
1932
1933
1934
1935
1936
1937
1938
1939
1940
1941
1942
1943
1944
1945
1946
1947
1948
1949
1950
1951
1952
1953
1954
1955
1956
1957
1958
1959
1960
1961
1962
1963
1964
1965
1966
1967
1968
1969
1970
1971
# File 'bigdecimal.c', line 1906

static VALUE
BigDecimal_to_s(int argc, VALUE *argv, VALUE self)
{
    ENTER(5);
    int   fmt = 0;   /* 0:E format */
    int   fPlus = 0; /* =0:default,=1: set ' ' before digits ,set '+' before digits. */
    Real  *vp;
    volatile VALUE str;
    char  *psz;
    char   ch;
    size_t nc, mc = 0;
    VALUE  f;

    GUARD_OBJ(vp, GetVpValue(self, 1));

    if (rb_scan_args(argc, argv, "01", &f) == 1) {
	if (RB_TYPE_P(f, T_STRING)) {
	    SafeStringValue(f);
	    psz = RSTRING_PTR(f);
	    if (*psz == ' ') {
		fPlus = 1;
		psz++;
	    }
	    else if (*psz == '+') {
		fPlus = 2;
		psz++;
	    }
	    while ((ch = *psz++) != 0) {
		if (ISSPACE(ch)) {
		    continue;
		}
		if (!ISDIGIT(ch)) {
		    if (ch == 'F' || ch == 'f') {
			fmt = 1; /* F format */
		    }
		    break;
		}
		mc = mc*10 + ch - '0';
	    }
	}
	else {
	    mc = (size_t)GetPositiveInt(f);
	}
    }
    if (fmt) {
	nc = VpNumOfChars(vp, "F");
    }
    else {
	nc = VpNumOfChars(vp, "E");
    }
    if (mc > 0) {
	nc += (nc + mc - 1) / mc + 1;
    }

    str = rb_str_new(0, nc);
    psz = RSTRING_PTR(str);

    if (fmt) {
	VpToFString(vp, psz, mc, fPlus);
    }
    else {
	VpToString (vp, psz, mc, fPlus);
    }
    rb_str_resize(str, strlen(psz));
    return str;
}

#truncate(*args) ⇒ Object

truncate(n)

Truncate to the nearest 1, returning the result as a BigDecimal.

BigDecimal(‘3.14159’).truncate #=> 3 BigDecimal(‘8.7’).truncate #=> 8

If n is specified and positive, the fractional part of the result has no more than that many digits.

If n is specified and negative, at least that many digits to the left of the decimal point will be 0 in the result.

BigDecimal(‘3.14159’).truncate(3) #=> 3.141 BigDecimal(‘13345.234’).truncate(-2) #=> 13300.0



1737
1738
1739
1740
1741
1742
1743
1744
1745
1746
1747
1748
1749
1750
1751
1752
1753
1754
1755
1756
1757
1758
1759
1760
1761
1762
1763
# File 'bigdecimal.c', line 1737

static VALUE
BigDecimal_truncate(int argc, VALUE *argv, VALUE self)
{
    ENTER(5);
    Real *c, *a;
    int iLoc;
    VALUE vLoc;
    size_t mx, pl = VpSetPrecLimit(0);

    if (rb_scan_args(argc, argv, "01", &vLoc) == 0) {
	iLoc = 0;
    }
    else {
	Check_Type(vLoc, T_FIXNUM);
	iLoc = FIX2INT(vLoc);
    }

    GUARD_OBJ(a, GetVpValue(self, 1));
    mx = a->Prec * (VpBaseFig() + 1);
    GUARD_OBJ(c, VpCreateRbObject(mx, "0"));
    VpSetPrecLimit(pl);
    VpActiveRound(c, a, VP_ROUND_DOWN, iLoc); /* 0: truncate */
    if (argc == 0) {
	return BigDecimal_to_i(ToValue(c));
    }
    return ToValue(c);
}

#zero?Boolean

Returns True if the value is zero.

Returns:

  • (Boolean)


1057
1058
1059
1060
1061
1062
# File 'bigdecimal.c', line 1057

static VALUE
BigDecimal_zero(VALUE self)
{
    Real *a = GetVpValue(self, 1);
    return VpIsZero(a) ? Qtrue : Qfalse;
}