Class: BigDecimal
- Inherits:
-
Numeric
- Object
- Numeric
- BigDecimal
- Defined in:
- lib/bigdecimal/util.rb,
bigdecimal.c,
bigdecimal.c
Overview
BigDecimal provides arbitrary-precision floating point decimal arithmetic.
Introduction
Ruby provides built-in support for arbitrary precision integer arithmetic.
For example:
42**13 #=> 1265437718438866624512
BigDecimal provides similar support for very large or very accurate floating point numbers.
Decimal arithmetic is also useful for general calculation, because it provides the correct answers people expect–whereas normal binary floating point arithmetic often introduces subtle errors because of the conversion between base 10 and base 2.
For example, try:
sum = 0
10_000.times do
sum = sum + 0.0001
end
print sum #=> 0.9999999999999062
and contrast with the output from:
require 'bigdecimal'
sum = BigDecimal.new("0")
10_000.times do
sum = sum + BigDecimal.new("0.0001")
end
print sum #=> 0.1E1
Similarly:
(BigDecimal.new(“1.2”) - BigDecimal(“1.0”)) == BigDecimal(“0.2”) #=> true
(1.2 - 1.0) == 0.2 #=> false
Special features of accurate decimal arithmetic
Because BigDecimal is more accurate than normal binary floating point arithmetic, it requires some special values.
Infinity
BigDecimal sometimes needs to return infinity, for example if you divide a value by zero.
BigDecimal.new(“1.0”) / BigDecimal.new(“0.0”) #=> Infinity BigDecimal.new(“-1.0”) / BigDecimal.new(“0.0”) #=> -Infinity
You can represent infinite numbers to BigDecimal using the strings 'Infinity'
, '+Infinity'
and '-Infinity'
(case-sensitive)
Not a Number
When a computation results in an undefined value, the special value NaN
(for ‘not a number’) is returned.
Example:
BigDecimal.new(“0.0”) / BigDecimal.new(“0.0”) #=> NaN
You can also create undefined values.
NaN is never considered to be the same as any other value, even NaN itself:
n = BigDecimal.new(‘NaN’) n == 0.0 #=> false n == n #=> false
Positive and negative zero
If a computation results in a value which is too small to be represented as a BigDecimal within the currently specified limits of precision, zero must be returned.
If the value which is too small to be represented is negative, a BigDecimal value of negative zero is returned.
BigDecimal.new(“1.0”) / BigDecimal.new(“-Infinity”) #=> -0.0
If the value is positive, a value of positive zero is returned.
BigDecimal.new(“1.0”) / BigDecimal.new(“Infinity”) #=> 0.0
(See BigDecimal.mode for how to specify limits of precision.)
Note that -0.0
and 0.0
are considered to be the same for the purposes of comparison.
Note also that in mathematics, there is no particular concept of negative or positive zero; true mathematical zero has no sign.
License
Copyright © 2002 by Shigeo Kobayashi <[email protected]>.
You may distribute under the terms of either the GNU General Public License or the Artistic License, as specified in the README file of the BigDecimal distribution.
Maintained by mrkn <[email protected]> and ruby-core members.
Documented by zzak <[email protected]>, mathew <[email protected]>, and many other contributors.
Constant Summary collapse
- BASE =
Base value used in internal calculations. On a 32 bit system, BASE is 10000, indicating that calculation is done in groups of 4 digits. (If it were larger, BASE**2 wouldn’t fit in 32 bits, so you couldn’t guarantee that two groups could always be multiplied together without overflow.)
INT2FIX((SIGNED_VALUE)VpBaseVal())
- EXCEPTION_ALL =
Determines whether overflow, underflow or zero divide result in an exception being thrown. See BigDecimal.mode.
0xff
- EXCEPTION_NaN =
Determines what happens when the result of a computation is not a number (NaN). See BigDecimal.mode.
0x02
- EXCEPTION_INFINITY =
Determines what happens when the result of a computation is infinity. See BigDecimal.mode.
0x01
- EXCEPTION_UNDERFLOW =
Determines what happens when the result of a computation is an underflow (a result too small to be represented). See BigDecimal.mode.
0x04
- EXCEPTION_OVERFLOW =
Determines what happens when the result of a computation is an overflow (a result too large to be represented). See BigDecimal.mode.
0x01
- EXCEPTION_ZERODIVIDE =
Determines what happens when a division by zero is performed. See BigDecimal.mode.
0x01
- ROUND_MODE =
Determines what happens when a result must be rounded in order to fit in the appropriate number of significant digits. See BigDecimal.mode.
0x100
- ROUND_UP =
Indicates that values should be rounded away from zero. See BigDecimal.mode.
1
- ROUND_DOWN =
Indicates that values should be rounded towards zero. See BigDecimal.mode.
2
- ROUND_HALF_UP =
Indicates that digits >= 5 should be rounded up, others rounded down. See BigDecimal.mode.
3
- ROUND_HALF_DOWN =
Indicates that digits >= 6 should be rounded up, others rounded down. See BigDecimal.mode.
4
- ROUND_CEILING =
Round towards +Infinity. See BigDecimal.mode.
5
- ROUND_FLOOR =
Round towards -Infinity. See BigDecimal.mode.
6
- ROUND_HALF_EVEN =
Round towards the even neighbor. See BigDecimal.mode.
7
- SIGN_NaN =
Indicates that a value is not a number. See BigDecimal.sign.
0
- SIGN_POSITIVE_ZERO =
Indicates that a value is +0. See BigDecimal.sign.
1
- SIGN_NEGATIVE_ZERO =
Indicates that a value is -0. See BigDecimal.sign.
-1
- SIGN_POSITIVE_FINITE =
Indicates that a value is positive and finite. See BigDecimal.sign.
2
- SIGN_NEGATIVE_FINITE =
Indicates that a value is negative and finite. See BigDecimal.sign.
-2
- SIGN_POSITIVE_INFINITE =
Indicates that a value is positive and infinite. See BigDecimal.sign.
3
- SIGN_NEGATIVE_INFINITE =
Indicates that a value is negative and infinite. See BigDecimal.sign.
-3
- INFINITY =
Positive infinity value.
BigDecimal_global_new(1, &arg, rb_cBigDecimal)
- NAN =
‘Not a Number’ value.
BigDecimal_global_new(1, &arg, rb_cBigDecimal)
Class Method Summary collapse
-
._load(str) ⇒ Object
Internal method used to provide marshalling support.
-
.double_fig ⇒ Object
BigDecimal.double_fig.
-
.limit(*args) ⇒ Object
BigDecimal.limit(digits).
-
.mode(*args) ⇒ Object
BigDecimal.mode(mode, value).
-
.save_exception_mode { ... } ⇒ Object
Execute the provided block, but preserve the exception mode.
-
.save_limit { ... } ⇒ Object
Execute the provided block, but preserve the precision limit.
-
.save_rounding_mode { ... } ⇒ Object
Execute the provided block, but preserve the rounding mode.
-
.ver ⇒ Object
Returns the BigDecimal version number.
Instance Method Summary collapse
-
#% ⇒ Object
%: a%b = a - (a.to_f/b).floor * b.
-
#*(r) ⇒ Object
call-seq: mult(value, digits).
-
#**(n) ⇒ Object
Returns the value raised to the power of n.
-
#+(r) ⇒ Object
call-seq: add(value, digits).
-
#+@ ⇒ Object
Return self.
-
#-(r) ⇒ Object
a - b -> bigdecimal.
-
#-@ ⇒ Object
Return the negation of self.
-
#/ ⇒ Object
For c = self/r: with round operation.
-
#<(r) ⇒ Object
a < b.
-
#<=(r) ⇒ Object
a <= b.
-
#<=>(r) ⇒ Object
The comparison operator.
-
#==(r) ⇒ Object
Tests for value equality; returns true if the values are equal.
-
#===(r) ⇒ Object
Tests for value equality; returns true if the values are equal.
-
#>(r) ⇒ Object
a > b.
-
#>=(r) ⇒ Object
a >= b.
-
#_dump ⇒ Object
Method used to provide marshalling support.
-
#abs ⇒ Object
Returns the absolute value, as a BigDecimal.
-
#add(b, n) ⇒ Object
call-seq: add(value, digits).
-
#ceil(*args) ⇒ Object
ceil(n).
-
#coerce(other) ⇒ Object
The coerce method provides support for Ruby type coercion.
- #div(*args) ⇒ Object
-
#divmod(r) ⇒ Object
divmod(value).
-
#eql?(r) ⇒ Boolean
Tests for value equality; returns true if the values are equal.
-
#exponent ⇒ Object
Returns the exponent of the BigDecimal number, as an Integer.
-
#finite? ⇒ Boolean
Returns True if the value is finite (not NaN or infinite).
-
#fix ⇒ Object
Return the integer part of the number, as a BigDecimal.
-
#floor(*args) ⇒ Object
floor(n).
-
#frac ⇒ Object
Return the fractional part of the number, as a BigDecimal.
-
#hash ⇒ Object
Creates a hash for this BigDecimal.
-
#infinite? ⇒ Boolean
Returns nil, -1, or 1 depending on whether the value is finite, -Infinity, or Infinity.
-
#new(initial, digits) ⇒ Object
constructor
Create a new BigDecimal object.
-
#initialize_copy(other) ⇒ Object
:nodoc:.
-
#inspect ⇒ Object
Returns debugging information about the value as a string of comma-separated values in angle brackets with a leading #:.
-
#modulo ⇒ Object
%: a%b = a - (a.to_f/b).floor * b.
-
#mult(b, n) ⇒ Object
call-seq: mult(value, digits).
-
#nan? ⇒ Boolean
Returns True if the value is Not a Number.
-
#nonzero? ⇒ Boolean
Returns self if the value is non-zero, nil otherwise.
-
#power(*args) ⇒ Object
power(n) power(n, prec).
-
#precs ⇒ Object
precs.
-
#quo ⇒ Object
For c = self/r: with round operation.
-
#remainder ⇒ Object
remainder.
-
#round(*args) ⇒ Object
round(n, mode).
-
#sign ⇒ Object
Returns the sign of the value.
-
#split ⇒ Object
Splits a BigDecimal number into four parts, returned as an array of values.
-
#sqrt(nFig) ⇒ Object
sqrt(n).
-
#sub(b, n) ⇒ Object
sub(value, digits) -> bigdecimal.
-
#to_d ⇒ Object
call-seq: a.to_d -> bigdecimal.
-
#to_digits ⇒ Object
call-seq: a.to_digits -> string.
-
#to_f ⇒ Object
Returns a new Float object having approximately the same value as the BigDecimal number.
-
#to_i ⇒ Object
Returns the value as an integer (Fixnum or Bignum).
-
#to_int ⇒ Object
Returns the value as an integer (Fixnum or Bignum).
-
#to_r ⇒ Object
Converts a BigDecimal to a Rational.
-
#to_s(*args) ⇒ Object
to_s(s).
-
#truncate(*args) ⇒ Object
truncate(n).
-
#zero? ⇒ Boolean
Returns True if the value is zero.
Constructor Details
#new(initial, digits) ⇒ Object
Create a new BigDecimal object.
- initial
-
The initial value, as an Integer, a Float, a Rational, a BigDecimal, or a String.
If it is a String, spaces are ignored and unrecognized characters terminate the value.
- digits
-
The number of significant digits, as a Fixnum. If omitted or 0, the number of significant digits is determined from the initial value.
The actual number of significant digits used in computation is usually larger than the specified number.
Exceptions
- TypeError
-
If the
initial
type is neither Fixnum, Bignum, Float, Rational, nor BigDecimal, this exception is raised. - TypeError
-
If the
digits
is not a Fixnum, this exception is raised. - ArgumentError
-
If
initial
is a Float, and thedigits
is larger than Float::DIG + 1, this exception is raised. - ArgumentError
-
If the
initial
is a Float or Rational, and thedigits
value is omitted, this exception is raised.
2508 2509 2510 2511 2512 2513 2514 2515 2516 2517 2518 2519 2520 2521 2522 2523 2524 2525 2526 |
# File 'bigdecimal.c', line 2508
static VALUE
BigDecimal_initialize(int argc, VALUE *argv, VALUE self)
{
ENTER(1);
Real *pv = rb_check_typeddata(self, &BigDecimal_data_type);
Real *x;
GUARD_OBJ(x, BigDecimal_new(argc, argv));
if (ToValue(x)) {
pv = VpCopy(pv, x);
}
else {
VpFree(pv);
pv = x;
}
DATA_PTR(self) = pv;
pv->obj = self;
return self;
}
|
Class Method Details
._load(str) ⇒ Object
Internal method used to provide marshalling support. See the Marshal module.
410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 |
# File 'bigdecimal.c', line 410
static VALUE
BigDecimal_load(VALUE self, VALUE str)
{
ENTER(2);
Real *pv;
unsigned char *pch;
unsigned char ch;
unsigned long m=0;
SafeStringValue(str);
pch = (unsigned char *)RSTRING_PTR(str);
/* First get max prec */
while((*pch) != (unsigned char)'\0' && (ch = *pch++) != (unsigned char)':') {
if(!ISDIGIT(ch)) {
rb_raise(rb_eTypeError, "load failed: invalid character in the marshaled string");
}
m = m*10 + (unsigned long)(ch-'0');
}
if (m > VpBaseFig()) m -= VpBaseFig();
GUARD_OBJ(pv, VpNewRbClass(m, (char *)pch, self));
m /= VpBaseFig();
if (m && pv->MaxPrec > m) {
pv->MaxPrec = m+1;
}
return ToValue(pv);
}
|
.double_fig ⇒ Object
BigDecimal.double_fig
The BigDecimal.double_fig class method returns the number of digits a Float number is allowed to have. The result depends upon the CPU and OS in use.
323 324 325 326 327 |
# File 'bigdecimal.c', line 323
static VALUE
BigDecimal_double_fig(VALUE self)
{
return INT2FIX(VpDblFig());
}
|
.limit(*args) ⇒ Object
BigDecimal.limit(digits)
Limit the number of significant digits in newly created BigDecimal numbers to the specified value. Rounding is performed as necessary, as specified by BigDecimal.mode.
A limit of 0, the default, means no upper limit.
The limit specified by this method takes less priority over any limit specified to instance methods such as ceil, floor, truncate, or round.
2619 2620 2621 2622 2623 2624 2625 2626 2627 2628 2629 2630 2631 2632 2633 2634 2635 2636 |
# File 'bigdecimal.c', line 2619
static VALUE
BigDecimal_limit(int argc, VALUE *argv, VALUE self)
{
VALUE nFig;
VALUE nCur = INT2NUM(VpGetPrecLimit());
if (rb_scan_args(argc, argv, "01", &nFig) == 1) {
int nf;
if (NIL_P(nFig)) return nCur;
Check_Type(nFig, T_FIXNUM);
nf = FIX2INT(nFig);
if (nf < 0) {
rb_raise(rb_eArgError, "argument must be positive");
}
VpSetPrecLimit(nf);
}
return nCur;
}
|
.mode(*args) ⇒ Object
BigDecimal.mode(mode, value)
Controls handling of arithmetic exceptions and rounding. If no value is supplied, the current value is returned.
Six values of the mode parameter control the handling of arithmetic exceptions:
BigDecimal::EXCEPTION_NaN BigDecimal::EXCEPTION_INFINITY BigDecimal::EXCEPTION_UNDERFLOW BigDecimal::EXCEPTION_OVERFLOW BigDecimal::EXCEPTION_ZERODIVIDE BigDecimal::EXCEPTION_ALL
For each mode parameter above, if the value set is false, computation continues after an arithmetic exception of the appropriate type. When computation continues, results are as follows:
- EXCEPTION_NaN
-
NaN
- EXCEPTION_INFINITY
-
+Infinity or -Infinity
- EXCEPTION_UNDERFLOW
-
0
- EXCEPTION_OVERFLOW
-
+Infinity or -Infinity
- EXCEPTION_ZERODIVIDE
-
+Infinity or -Infinity
One value of the mode parameter controls the rounding of numeric values: BigDecimal::ROUND_MODE. The values it can take are:
- ROUND_UP, :up
-
round away from zero
- ROUND_DOWN, :down, :truncate
-
round towards zero (truncate)
- ROUND_HALF_UP, :half_up, :default
-
round towards the nearest neighbor, unless both neighbors are equidistant, in which case round away from zero. (default)
- ROUND_HALF_DOWN, :half_down
-
round towards the nearest neighbor, unless both neighbors are equidistant, in which case round towards zero.
- ROUND_HALF_EVEN, :half_even, :banker
-
round towards the nearest neighbor, unless both neighbors are equidistant, in which case round towards the even neighbor (Banker’s rounding)
- ROUND_CEILING, :ceiling, :ceil
-
round towards positive infinity (ceil)
- ROUND_FLOOR, :floor
-
round towards negative infinity (floor)
511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 |
# File 'bigdecimal.c', line 511
static VALUE
BigDecimal_mode(int argc, VALUE *argv, VALUE self)
{
VALUE which;
VALUE val;
unsigned long f,fo;
rb_scan_args(argc, argv, "11", &which, &val);
Check_Type(which, T_FIXNUM);
f = (unsigned long)FIX2INT(which);
if (f & VP_EXCEPTION_ALL) {
/* Exception mode setting */
fo = VpGetException();
if (val == Qnil) return INT2FIX(fo);
if (val != Qfalse && val!=Qtrue) {
rb_raise(rb_eArgError, "second argument must be true or false");
return Qnil; /* Not reached */
}
if (f & VP_EXCEPTION_INFINITY) {
VpSetException((unsigned short)((val == Qtrue) ? (fo | VP_EXCEPTION_INFINITY) :
(fo & (~VP_EXCEPTION_INFINITY))));
}
fo = VpGetException();
if (f & VP_EXCEPTION_NaN) {
VpSetException((unsigned short)((val == Qtrue) ? (fo | VP_EXCEPTION_NaN) :
(fo & (~VP_EXCEPTION_NaN))));
}
fo = VpGetException();
if (f & VP_EXCEPTION_UNDERFLOW) {
VpSetException((unsigned short)((val == Qtrue) ? (fo | VP_EXCEPTION_UNDERFLOW) :
(fo & (~VP_EXCEPTION_UNDERFLOW))));
}
fo = VpGetException();
if(f & VP_EXCEPTION_ZERODIVIDE) {
VpSetException((unsigned short)((val == Qtrue) ? (fo | VP_EXCEPTION_ZERODIVIDE) :
(fo & (~VP_EXCEPTION_ZERODIVIDE))));
}
fo = VpGetException();
return INT2FIX(fo);
}
if (VP_ROUND_MODE == f) {
/* Rounding mode setting */
unsigned short sw;
fo = VpGetRoundMode();
if (NIL_P(val)) return INT2FIX(fo);
sw = check_rounding_mode(val);
fo = VpSetRoundMode(sw);
return INT2FIX(fo);
}
rb_raise(rb_eTypeError, "first argument for BigDecimal#mode invalid");
return Qnil;
}
|
.save_exception_mode { ... } ⇒ Object
Execute the provided block, but preserve the exception mode
BigDecimal.save_exception_mode do
BigDecimal.mode(BigDecimal::EXCEPTION_OVERFLOW, false)
BigDecimal.mode(BigDecimal::EXCEPTION_NaN, false)
BigDecimal.new(BigDecimal('Infinity'))
BigDecimal.new(BigDecimal('-Infinity'))
BigDecimal(BigDecimal.new('NaN'))
end
For use with the BigDecimal::EXCEPTION_*
See BigDecimal.mode
2679 2680 2681 2682 2683 2684 2685 2686 2687 2688 |
# File 'bigdecimal.c', line 2679
static VALUE
BigDecimal_save_exception_mode(VALUE self)
{
unsigned short const exception_mode = VpGetException();
int state;
VALUE ret = rb_protect(rb_yield, Qnil, &state);
VpSetException(exception_mode);
if (state) rb_jump_tag(state);
return ret;
}
|
.save_limit { ... } ⇒ Object
Execute the provided block, but preserve the precision limit
BigDecimal.limit(100)
puts BigDecimal.limit
BigDecimal.save_limit do
BigDecimal.limit(200)
puts BigDecimal.limit
end
puts BigDecimal.limit
2729 2730 2731 2732 2733 2734 2735 2736 2737 2738 |
# File 'bigdecimal.c', line 2729
static VALUE
BigDecimal_save_limit(VALUE self)
{
size_t const limit = VpGetPrecLimit();
int state;
VALUE ret = rb_protect(rb_yield, Qnil, &state);
VpSetPrecLimit(limit);
if (state) rb_jump_tag(state);
return ret;
}
|
.save_rounding_mode { ... } ⇒ Object
Execute the provided block, but preserve the rounding mode
BigDecimal.save_rounding_mode do
BigDecimal.mode(BigDecimal::ROUND_MODE, :up)
puts BigDecimal.mode(BigDecimal::ROUND_MODE)
end
For use with the BigDecimal::ROUND_*
See BigDecimal.mode
2704 2705 2706 2707 2708 2709 2710 2711 2712 2713 |
# File 'bigdecimal.c', line 2704
static VALUE
BigDecimal_save_rounding_mode(VALUE self)
{
unsigned short const round_mode = VpGetRoundMode();
int state;
VALUE ret = rb_protect(rb_yield, Qnil, &state);
VpSetRoundMode(round_mode);
if (state) rb_jump_tag(state);
return ret;
}
|
.ver ⇒ Object
Returns the BigDecimal version number.
137 138 139 140 141 142 143 144 145 146 |
# File 'bigdecimal.c', line 137
static VALUE
BigDecimal_version(VALUE self)
{
/*
* 1.0.0: Ruby 1.8.0
* 1.0.1: Ruby 1.8.1
* 1.1.0: Ruby 1.9.3
*/
return rb_str_new2("1.1.0");
}
|
Instance Method Details
#% ⇒ Object
%: a%b = a - (a.to_f/b).floor * b
1393 1394 1395 1396 1397 1398 1399 1400 1401 1402 1403 1404 |
# File 'bigdecimal.c', line 1393
static VALUE
BigDecimal_mod(VALUE self, VALUE r) /* %: a%b = a - (a.to_f/b).floor * b */
{
ENTER(3);
Real *div = NULL, *mod = NULL;
if (BigDecimal_DoDivmod(self, r, &div, &mod)) {
SAVE(div); SAVE(mod);
return ToValue(mod);
}
return DoSomeOne(self, r, '%');
}
|
#*(r) ⇒ Object
call-seq: mult(value, digits)
Multiply by the specified value.
e.g.
c = a.mult(b,n)
c = a * b
- digits
-
If specified and less than the number of significant digits of the result, the result is rounded to that number of digits, according to BigDecimal.mode.
1201 1202 1203 1204 1205 1206 1207 1208 1209 1210 1211 1212 1213 1214 1215 1216 1217 1218 1219 1220 1221 1222 1223 1224 1225 1226 |
# File 'bigdecimal.c', line 1201
static VALUE
BigDecimal_mult(VALUE self, VALUE r)
{
ENTER(5);
Real *c, *a, *b;
size_t mx;
GUARD_OBJ(a, GetVpValue(self, 1));
if (RB_TYPE_P(r, T_FLOAT)) {
b = GetVpValueWithPrec(r, DBL_DIG+1, 1);
}
else if (RB_TYPE_P(r, T_RATIONAL)) {
b = GetVpValueWithPrec(r, a->Prec*VpBaseFig(), 1);
}
else {
b = GetVpValue(r,0);
}
if (!b) return DoSomeOne(self, r, '*');
SAVE(b);
mx = a->Prec + b->Prec;
GUARD_OBJ(c, VpCreateRbObject(mx *(VpBaseFig() + 1), "0"));
VpMult(c, a, b);
return ToValue(c);
}
|
#**(n) ⇒ Object
Returns the value raised to the power of n.
See BigDecimal#power.
2463 2464 2465 2466 2467 |
# File 'bigdecimal.c', line 2463
static VALUE
BigDecimal_power_op(VALUE self, VALUE exp)
{
return BigDecimal_power(1, &exp, self);
}
|
#+(r) ⇒ Object
call-seq: add(value, digits)
Add the specified value.
e.g.
c = a.add(b,n)
c = a + b
- digits
-
If specified and less than the number of significant digits of the result, the result is rounded to that number of digits, according to BigDecimal.mode.
880 881 882 883 884 885 886 887 888 889 890 891 892 893 894 895 896 897 898 899 900 901 902 903 904 905 906 907 908 909 910 911 912 913 914 915 916 917 918 919 |
# File 'bigdecimal.c', line 880
static VALUE
BigDecimal_add(VALUE self, VALUE r)
{
ENTER(5);
Real *c, *a, *b;
size_t mx;
GUARD_OBJ(a, GetVpValue(self, 1));
if (RB_TYPE_P(r, T_FLOAT)) {
b = GetVpValueWithPrec(r, DBL_DIG+1, 1);
}
else if (RB_TYPE_P(r, T_RATIONAL)) {
b = GetVpValueWithPrec(r, a->Prec*VpBaseFig(), 1);
}
else {
b = GetVpValue(r, 0);
}
if (!b) return DoSomeOne(self,r,'+');
SAVE(b);
if (VpIsNaN(b)) return b->obj;
if (VpIsNaN(a)) return a->obj;
mx = GetAddSubPrec(a, b);
if (mx == (size_t)-1L) {
GUARD_OBJ(c,VpCreateRbObject(VpBaseFig() + 1, "0"));
VpAddSub(c, a, b, 1);
}
else {
GUARD_OBJ(c, VpCreateRbObject(mx * (VpBaseFig() + 1), "0"));
if(!mx) {
VpSetInf(c, VpGetSign(a));
}
else {
VpAddSub(c, a, b, 1);
}
}
return ToValue(c);
}
|
#+@ ⇒ Object
Return self.
e.g.
b = +a # b == a
857 858 859 860 861 |
# File 'bigdecimal.c', line 857
static VALUE
BigDecimal_uplus(VALUE self)
{
return self;
}
|
#-(r) ⇒ Object
a - b -> bigdecimal
Subtract the specified value.
e.g.
c = a - b
The precision of the result value depends on the type of b
.
If b
is a Float, the precision of the result is Float::DIG+1.
If b
is a BigDecimal, the precision of the result is b
‘s precision of internal representation from platform. So, it’s return value is platform dependent.
938 939 940 941 942 943 944 945 946 947 948 949 950 951 952 953 954 955 956 957 958 959 960 961 962 963 964 965 966 967 968 969 970 971 972 973 974 975 976 977 |
# File 'bigdecimal.c', line 938
static VALUE
BigDecimal_sub(VALUE self, VALUE r)
{
ENTER(5);
Real *c, *a, *b;
size_t mx;
GUARD_OBJ(a, GetVpValue(self,1));
if (RB_TYPE_P(r, T_FLOAT)) {
b = GetVpValueWithPrec(r, DBL_DIG+1, 1);
}
else if (RB_TYPE_P(r, T_RATIONAL)) {
b = GetVpValueWithPrec(r, a->Prec*VpBaseFig(), 1);
}
else {
b = GetVpValue(r,0);
}
if (!b) return DoSomeOne(self,r,'-');
SAVE(b);
if (VpIsNaN(b)) return b->obj;
if (VpIsNaN(a)) return a->obj;
mx = GetAddSubPrec(a,b);
if (mx == (size_t)-1L) {
GUARD_OBJ(c,VpCreateRbObject(VpBaseFig() + 1, "0"));
VpAddSub(c, a, b, -1);
}
else {
GUARD_OBJ(c,VpCreateRbObject(mx *(VpBaseFig() + 1), "0"));
if (!mx) {
VpSetInf(c,VpGetSign(a));
}
else {
VpAddSub(c, a, b, -1);
}
}
return ToValue(c);
}
|
#-@ ⇒ Object
Return the negation of self.
e.g.
b = -a
b == a * -1
1175 1176 1177 1178 1179 1180 1181 1182 1183 1184 |
# File 'bigdecimal.c', line 1175
static VALUE
BigDecimal_neg(VALUE self)
{
ENTER(5);
Real *c, *a;
GUARD_OBJ(a, GetVpValue(self, 1));
GUARD_OBJ(c, VpCreateRbObject(a->Prec *(VpBaseFig() + 1), "0"));
VpAsgn(c, a, -1);
return ToValue(c);
}
|
#/ ⇒ Object
For c = self/r: with round operation
1281 1282 1283 1284 1285 1286 1287 1288 1289 1290 1291 1292 1293 1294 1295 1296 1297 1298 1299 |
# File 'bigdecimal.c', line 1281
static VALUE
BigDecimal_div(VALUE self, VALUE r)
/* For c = self/r: with round operation */
{
ENTER(5);
Real *c=NULL, *res=NULL, *div = NULL;
r = BigDecimal_divide(&c, &res, &div, self, r);
if (!NIL_P(r)) return r; /* coerced by other */
SAVE(c); SAVE(res); SAVE(div);
/* a/b = c + r/b */
/* c xxxxx
r 00000yyyyy ==> (y/b)*BASE >= HALF_BASE
*/
/* Round */
if (VpHasVal(div)) { /* frac[0] must be zero for NaN,INF,Zero */
VpInternalRound(c, 0, c->frac[c->Prec-1], (BDIGIT)(VpBaseVal() * (BDIGIT_DBL)res->frac[0] / div->frac[0]));
}
return ToValue(c);
}
|
#<(r) ⇒ Object
a < b
Returns true if a is less than b.
Values may be coerced to perform the comparison (see ==, BigDecimal#coerce).
1121 1122 1123 1124 1125 |
# File 'bigdecimal.c', line 1121
static VALUE
BigDecimal_lt(VALUE self, VALUE r)
{
return BigDecimalCmp(self, r, '<');
}
|
#<=(r) ⇒ Object
a <= b
Returns true if a is less than or equal to b.
Values may be coerced to perform the comparison (see ==, BigDecimal#coerce).
1134 1135 1136 1137 1138 |
# File 'bigdecimal.c', line 1134
static VALUE
BigDecimal_le(VALUE self, VALUE r)
{
return BigDecimalCmp(self, r, 'L');
}
|
#<=>(r) ⇒ Object
The comparison operator. a <=> b is 0 if a == b, 1 if a > b, -1 if a < b.
1092 1093 1094 1095 1096 |
# File 'bigdecimal.c', line 1092
static VALUE
BigDecimal_comp(VALUE self, VALUE r)
{
return BigDecimalCmp(self, r, '*');
}
|
#==(r) ⇒ Object
Tests for value equality; returns true if the values are equal.
The == and === operators and the eql? method have the same implementation for BigDecimal.
Values may be coerced to perform the comparison:
BigDecimal.new('1.0') == 1.0 #=> true
1108 1109 1110 1111 1112 |
# File 'bigdecimal.c', line 1108
static VALUE
BigDecimal_eq(VALUE self, VALUE r)
{
return BigDecimalCmp(self, r, '=');
}
|
#===(r) ⇒ Object
Tests for value equality; returns true if the values are equal.
The == and === operators and the eql? method have the same implementation for BigDecimal.
Values may be coerced to perform the comparison:
BigDecimal.new('1.0') == 1.0 #=> true
1108 1109 1110 1111 1112 |
# File 'bigdecimal.c', line 1108
static VALUE
BigDecimal_eq(VALUE self, VALUE r)
{
return BigDecimalCmp(self, r, '=');
}
|
#>(r) ⇒ Object
a > b
Returns true if a is greater than b.
Values may be coerced to perform the comparison (see ==, BigDecimal#coerce).
1147 1148 1149 1150 1151 |
# File 'bigdecimal.c', line 1147
static VALUE
BigDecimal_gt(VALUE self, VALUE r)
{
return BigDecimalCmp(self, r, '>');
}
|
#>=(r) ⇒ Object
a >= b
Returns true if a is greater than or equal to b.
Values may be coerced to perform the comparison (see ==, BigDecimal#coerce)
1160 1161 1162 1163 1164 |
# File 'bigdecimal.c', line 1160
static VALUE
BigDecimal_ge(VALUE self, VALUE r)
{
return BigDecimalCmp(self, r, 'G');
}
|
#_dump ⇒ Object
Method used to provide marshalling support.
inf = BigDecimal.new('Infinity')
#=> #<BigDecimal:1e16fa8,'Infinity',9(9)>
BigDecimal._load(inf._dump)
#=> #<BigDecimal:1df8dc8,'Infinity',9(9)>
See the Marshal module.
388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 |
# File 'bigdecimal.c', line 388
static VALUE
BigDecimal_dump(int argc, VALUE *argv, VALUE self)
{
ENTER(5);
Real *vp;
char *psz;
VALUE dummy;
volatile VALUE dump;
rb_scan_args(argc, argv, "01", &dummy);
GUARD_OBJ(vp,GetVpValue(self, 1));
dump = rb_str_new(0, VpNumOfChars(vp, "E")+50);
psz = RSTRING_PTR(dump);
sprintf(psz, "%"PRIuSIZE":", VpMaxPrec(vp)*VpBaseFig());
VpToString(vp, psz+strlen(psz), 0, 0);
rb_str_resize(dump, strlen(psz));
return dump;
}
|
#abs ⇒ Object
Returns the absolute value, as a BigDecimal.
BigDecimal('5').abs #=> 5
BigDecimal('-3').abs #=> 3
1626 1627 1628 1629 1630 1631 1632 1633 1634 1635 1636 1637 1638 1639 |
# File 'bigdecimal.c', line 1626
static VALUE
BigDecimal_abs(VALUE self)
{
ENTER(5);
Real *c, *a;
size_t mx;
GUARD_OBJ(a, GetVpValue(self, 1));
mx = a->Prec *(VpBaseFig() + 1);
GUARD_OBJ(c, VpCreateRbObject(mx, "0"));
VpAsgn(c, a, 1);
VpChangeSign(c, 1);
return ToValue(c);
}
|
#add(b, n) ⇒ Object
call-seq: add(value, digits)
Add the specified value.
e.g.
c = a.add(b,n)
c = a + b
- digits
-
If specified and less than the number of significant digits of the result, the result is rounded to that number of digits, according to BigDecimal.mode.
1556 1557 1558 1559 1560 1561 1562 1563 1564 1565 1566 1567 1568 1569 1570 1571 |
# File 'bigdecimal.c', line 1556
static VALUE
BigDecimal_add2(VALUE self, VALUE b, VALUE n)
{
ENTER(2);
Real *cv;
SIGNED_VALUE mx = GetPositiveInt(n);
if (mx == 0) return BigDecimal_add(self, b);
else {
size_t pl = VpSetPrecLimit(0);
VALUE c = BigDecimal_add(self, b);
VpSetPrecLimit(pl);
GUARD_OBJ(cv, GetVpValue(c, 1));
VpLeftRound(cv, VpGetRoundMode(), mx);
return ToValue(cv);
}
}
|
#ceil(*args) ⇒ Object
ceil(n)
Return the smallest integer greater than or equal to the value, as a BigDecimal.
BigDecimal(‘3.14159’).ceil #=> 4 BigDecimal(‘-9.1’).ceil #=> -9
If n is specified and positive, the fractional part of the result has no more than that many digits.
If n is specified and negative, at least that many digits to the left of the decimal point will be 0 in the result.
BigDecimal(‘3.14159’).ceil(3) #=> 3.142 BigDecimal(‘13345.234’).ceil(-2) #=> 13400.0
1872 1873 1874 1875 1876 1877 1878 1879 1880 1881 1882 1883 1884 1885 1886 1887 1888 1889 1890 1891 1892 1893 1894 1895 1896 1897 |
# File 'bigdecimal.c', line 1872
static VALUE
BigDecimal_ceil(int argc, VALUE *argv, VALUE self)
{
ENTER(5);
Real *c, *a;
int iLoc;
VALUE vLoc;
size_t mx, pl = VpSetPrecLimit(0);
if (rb_scan_args(argc, argv, "01", &vLoc) == 0) {
iLoc = 0;
} else {
Check_Type(vLoc, T_FIXNUM);
iLoc = FIX2INT(vLoc);
}
GUARD_OBJ(a, GetVpValue(self, 1));
mx = a->Prec * (VpBaseFig() + 1);
GUARD_OBJ(c, VpCreateRbObject(mx, "0"));
VpSetPrecLimit(pl);
VpActiveRound(c, a, VP_ROUND_CEIL, iLoc);
if (argc == 0) {
return BigDecimal_to_i(ToValue(c));
}
return ToValue(c);
}
|
#coerce(other) ⇒ Object
The coerce method provides support for Ruby type coercion. It is not enabled by default.
This means that binary operations like + * / or - can often be performed on a BigDecimal and an object of another type, if the other object can be coerced into a BigDecimal value.
e.g.
a = BigDecimal.new("1.0")
b = a / 2.0 #=> 0.5
Note that coercing a String to a BigDecimal is not supported by default; it requires a special compile-time option when building Ruby.
824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 846 847 |
# File 'bigdecimal.c', line 824
static VALUE
BigDecimal_coerce(VALUE self, VALUE other)
{
ENTER(2);
VALUE obj;
Real *b;
if (RB_TYPE_P(other, T_FLOAT)) {
GUARD_OBJ(b, GetVpValueWithPrec(other, DBL_DIG+1, 1));
obj = rb_assoc_new(ToValue(b), self);
}
else {
if (RB_TYPE_P(other, T_RATIONAL)) {
Real* pv = DATA_PTR(self);
GUARD_OBJ(b, GetVpValueWithPrec(other, pv->Prec*VpBaseFig(), 1));
}
else {
GUARD_OBJ(b, GetVpValue(other, 1));
}
obj = rb_assoc_new(b->obj, self);
}
return obj;
}
|
#div(*args) ⇒ Object
1546 1547 1548 1549 1550 1551 1552 1553 1554 |
# File 'bigdecimal.c', line 1546
static VALUE
BigDecimal_div3(int argc, VALUE *argv, VALUE self)
{
VALUE b,n;
rb_scan_args(argc, argv, "11", &b, &n);
return BigDecimal_div2(self, b, n);
}
|
#divmod(r) ⇒ Object
divmod(value)
Divides by the specified value, and returns the quotient and modulus as BigDecimal numbers. The quotient is rounded towards negative infinity.
For example:
require 'bigdecimal'
a = BigDecimal.new("42")
b = BigDecimal.new("9")
q, m = a.divmod(b)
c = q * b + m
a == c #=> true
The quotient q is (a/b).floor, and the modulus is the amount that must be added to q * b to get a.
1491 1492 1493 1494 1495 1496 1497 1498 1499 1500 1501 1502 |
# File 'bigdecimal.c', line 1491
static VALUE
BigDecimal_divmod(VALUE self, VALUE r)
{
ENTER(5);
Real *div = NULL, *mod = NULL;
if (BigDecimal_DoDivmod(self, r, &div, &mod)) {
SAVE(div); SAVE(mod);
return rb_assoc_new(ToValue(div), ToValue(mod));
}
return DoSomeOne(self,r,rb_intern("divmod"));
}
|
#eql?(r) ⇒ Boolean
Tests for value equality; returns true if the values are equal.
The == and === operators and the eql? method have the same implementation for BigDecimal.
Values may be coerced to perform the comparison:
BigDecimal.new('1.0') == 1.0 #=> true
1108 1109 1110 1111 1112 |
# File 'bigdecimal.c', line 1108
static VALUE
BigDecimal_eq(VALUE self, VALUE r)
{
return BigDecimalCmp(self, r, '=');
}
|
#exponent ⇒ Object
Returns the exponent of the BigDecimal number, as an Integer.
If the number can be represented as 0.xxxxxx*10**n where xxxxxx is a string of digits with no leading zeros, then n is the exponent.
2060 2061 2062 2063 2064 2065 |
# File 'bigdecimal.c', line 2060
static VALUE
BigDecimal_exponent(VALUE self)
{
ssize_t e = VpExponent10(GetVpValue(self, 1));
return INT2NUM(e);
}
|
#finite? ⇒ Boolean
Returns True if the value is finite (not NaN or infinite).
655 656 657 658 659 660 661 662 |
# File 'bigdecimal.c', line 655
static VALUE
BigDecimal_IsFinite(VALUE self)
{
Real *p = GetVpValue(self, 1);
if (VpIsNaN(p)) return Qfalse;
if (VpIsInf(p)) return Qfalse;
return Qtrue;
}
|
#fix ⇒ Object
Return the integer part of the number, as a BigDecimal.
1667 1668 1669 1670 1671 1672 1673 1674 1675 1676 1677 1678 1679 |
# File 'bigdecimal.c', line 1667
static VALUE
BigDecimal_fix(VALUE self)
{
ENTER(5);
Real *c, *a;
size_t mx;
GUARD_OBJ(a, GetVpValue(self, 1));
mx = a->Prec *(VpBaseFig() + 1);
GUARD_OBJ(c, VpCreateRbObject(mx, "0"));
VpActiveRound(c, a, VP_ROUND_DOWN, 0); /* 0: round off */
return ToValue(c);
}
|
#floor(*args) ⇒ Object
floor(n)
Return the largest integer less than or equal to the value, as a BigDecimal.
BigDecimal(‘3.14159’).floor #=> 3 BigDecimal(‘-9.1’).floor #=> -10
If n is specified and positive, the fractional part of the result has no more than that many digits.
If n is specified and negative, at least that many digits to the left of the decimal point will be 0 in the result.
BigDecimal(‘3.14159’).floor(3) #=> 3.141 BigDecimal(‘13345.234’).floor(-2) #=> 13300.0
1824 1825 1826 1827 1828 1829 1830 1831 1832 1833 1834 1835 1836 1837 1838 1839 1840 1841 1842 1843 1844 1845 1846 1847 1848 1849 1850 1851 1852 1853 |
# File 'bigdecimal.c', line 1824
static VALUE
BigDecimal_floor(int argc, VALUE *argv, VALUE self)
{
ENTER(5);
Real *c, *a;
int iLoc;
VALUE vLoc;
size_t mx, pl = VpSetPrecLimit(0);
if (rb_scan_args(argc, argv, "01", &vLoc)==0) {
iLoc = 0;
}
else {
Check_Type(vLoc, T_FIXNUM);
iLoc = FIX2INT(vLoc);
}
GUARD_OBJ(a, GetVpValue(self, 1));
mx = a->Prec * (VpBaseFig() + 1);
GUARD_OBJ(c, VpCreateRbObject(mx, "0"));
VpSetPrecLimit(pl);
VpActiveRound(c, a, VP_ROUND_FLOOR, iLoc);
#ifdef BIGDECIMAL_DEBUG
VPrint(stderr, "floor: c=%\n", c);
#endif
if (argc == 0) {
return BigDecimal_to_i(ToValue(c));
}
return ToValue(c);
}
|
#frac ⇒ Object
Return the fractional part of the number, as a BigDecimal.
1793 1794 1795 1796 1797 1798 1799 1800 1801 1802 1803 1804 1805 |
# File 'bigdecimal.c', line 1793
static VALUE
BigDecimal_frac(VALUE self)
{
ENTER(5);
Real *c, *a;
size_t mx;
GUARD_OBJ(a, GetVpValue(self, 1));
mx = a->Prec * (VpBaseFig() + 1);
GUARD_OBJ(c, VpCreateRbObject(mx, "0"));
VpFrac(c, a);
return ToValue(c);
}
|
#hash ⇒ Object
Creates a hash for this BigDecimal.
Two BigDecimals with equal sign, fractional part and exponent have the same hash.
359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 |
# File 'bigdecimal.c', line 359
static VALUE
BigDecimal_hash(VALUE self)
{
ENTER(1);
Real *p;
st_index_t hash;
GUARD_OBJ(p, GetVpValue(self, 1));
hash = (st_index_t)p->sign;
/* hash!=2: the case for 0(1),NaN(0) or +-Infinity(3) is sign itself */
if(hash == 2 || hash == (st_index_t)-2) {
hash ^= rb_memhash(p->frac, sizeof(BDIGIT)*p->Prec);
hash += p->exponent;
}
return INT2FIX(hash);
}
|
#infinite? ⇒ Boolean
Returns nil, -1, or 1 depending on whether the value is finite, -Infinity, or Infinity.
645 646 647 648 649 650 651 652 |
# File 'bigdecimal.c', line 645
static VALUE
BigDecimal_IsInfinite(VALUE self)
{
Real *p = GetVpValue(self, 1);
if (VpIsPosInf(p)) return INT2FIX(1);
if (VpIsNegInf(p)) return INT2FIX(-1);
return Qnil;
}
|
#initialize_copy(other) ⇒ Object
:nodoc:
private method to dup and clone the provided BigDecimal other
2532 2533 2534 2535 2536 2537 2538 2539 2540 2541 2542 |
# File 'bigdecimal.c', line 2532
static VALUE
BigDecimal_initialize_copy(VALUE self, VALUE other)
{
Real *pv = rb_check_typeddata(self, &BigDecimal_data_type);
Real *x = rb_check_typeddata(other, &BigDecimal_data_type);
if (self != other) {
DATA_PTR(self) = VpCopy(pv, x);
}
return self;
}
|
#inspect ⇒ Object
Returns debugging information about the value as a string of comma-separated values in angle brackets with a leading #:
BigDecimal.new("1234.5678").inspect
#=> "#<BigDecimal:b7ea1130,'0.12345678E4',8(12)>"
The first part is the address, the second is the value as a string, and the final part ss(mm) is the current number of significant digits and the maximum number of significant digits, respectively.
2077 2078 2079 2080 2081 2082 2083 2084 2085 2086 2087 2088 2089 2090 2091 2092 2093 2094 2095 2096 2097 2098 2099 |
# File 'bigdecimal.c', line 2077
static VALUE
BigDecimal_inspect(VALUE self)
{
ENTER(5);
Real *vp;
volatile VALUE obj;
size_t nc;
char *psz, *tmp;
GUARD_OBJ(vp, GetVpValue(self, 1));
nc = VpNumOfChars(vp, "E");
nc += (nc + 9) / 10;
obj = rb_str_new(0, nc+256);
psz = RSTRING_PTR(obj);
sprintf(psz, "#<BigDecimal:%"PRIxVALUE",'", self);
tmp = psz + strlen(psz);
VpToString(vp, tmp, 10, 0);
tmp += strlen(tmp);
sprintf(tmp, "',%"PRIuSIZE"(%"PRIuSIZE")>", VpPrec(vp)*VpBaseFig(), VpMaxPrec(vp)*VpBaseFig());
rb_str_resize(obj, strlen(psz));
return obj;
}
|
#modulo ⇒ Object
%: a%b = a - (a.to_f/b).floor * b
1393 1394 1395 1396 1397 1398 1399 1400 1401 1402 1403 1404 |
# File 'bigdecimal.c', line 1393
static VALUE
BigDecimal_mod(VALUE self, VALUE r) /* %: a%b = a - (a.to_f/b).floor * b */
{
ENTER(3);
Real *div = NULL, *mod = NULL;
if (BigDecimal_DoDivmod(self, r, &div, &mod)) {
SAVE(div); SAVE(mod);
return ToValue(mod);
}
return DoSomeOne(self, r, '%');
}
|
#mult(b, n) ⇒ Object
call-seq: mult(value, digits)
Multiply by the specified value.
e.g.
c = a.mult(b,n)
c = a * b
- digits
-
If specified and less than the number of significant digits of the result, the result is rounded to that number of digits, according to BigDecimal.mode.
1604 1605 1606 1607 1608 1609 1610 1611 1612 1613 1614 1615 1616 1617 1618 1619 |
# File 'bigdecimal.c', line 1604
static VALUE
BigDecimal_mult2(VALUE self, VALUE b, VALUE n)
{
ENTER(2);
Real *cv;
SIGNED_VALUE mx = GetPositiveInt(n);
if (mx == 0) return BigDecimal_mult(self, b);
else {
size_t pl = VpSetPrecLimit(0);
VALUE c = BigDecimal_mult(self, b);
VpSetPrecLimit(pl);
GUARD_OBJ(cv, GetVpValue(c, 1));
VpLeftRound(cv, VpGetRoundMode(), mx);
return ToValue(cv);
}
}
|
#nan? ⇒ Boolean
Returns True if the value is Not a Number.
634 635 636 637 638 639 640 |
# File 'bigdecimal.c', line 634
static VALUE
BigDecimal_IsNaN(VALUE self)
{
Real *p = GetVpValue(self, 1);
if (VpIsNaN(p)) return Qtrue;
return Qfalse;
}
|
#nonzero? ⇒ Boolean
Returns self if the value is non-zero, nil otherwise.
1082 1083 1084 1085 1086 1087 |
# File 'bigdecimal.c', line 1082
static VALUE
BigDecimal_nonzero(VALUE self)
{
Real *a = GetVpValue(self, 1);
return VpIsZero(a) ? Qnil : self;
}
|
#power(*args) ⇒ Object
power(n) power(n, prec)
Returns the value raised to the power of n.
Note that n must be an Integer.
Also available as the operator **.
2227 2228 2229 2230 2231 2232 2233 2234 2235 2236 2237 2238 2239 2240 2241 2242 2243 2244 2245 2246 2247 2248 2249 2250 2251 2252 2253 2254 2255 2256 2257 2258 2259 2260 2261 2262 2263 2264 2265 2266 2267 2268 2269 2270 2271 2272 2273 2274 2275 2276 2277 2278 2279 2280 2281 2282 2283 2284 2285 2286 2287 2288 2289 2290 2291 2292 2293 2294 2295 2296 2297 2298 2299 2300 2301 2302 2303 2304 2305 2306 2307 2308 2309 2310 2311 2312 2313 2314 2315 2316 2317 2318 2319 2320 2321 2322 2323 2324 2325 2326 2327 2328 2329 2330 2331 2332 2333 2334 2335 2336 2337 2338 2339 2340 2341 2342 2343 2344 2345 2346 2347 2348 2349 2350 2351 2352 2353 2354 2355 2356 2357 2358 2359 2360 2361 2362 2363 2364 2365 2366 2367 2368 2369 2370 2371 2372 2373 2374 2375 2376 2377 2378 2379 2380 2381 2382 2383 2384 2385 2386 2387 2388 2389 2390 2391 2392 2393 2394 2395 2396 2397 2398 2399 2400 2401 2402 2403 2404 2405 2406 2407 2408 2409 2410 2411 2412 2413 2414 2415 2416 2417 2418 2419 2420 2421 2422 2423 2424 2425 2426 2427 2428 2429 2430 2431 2432 2433 2434 2435 2436 2437 2438 2439 2440 2441 2442 2443 2444 2445 2446 2447 2448 2449 2450 2451 2452 2453 2454 |
# File 'bigdecimal.c', line 2227
static VALUE
BigDecimal_power(int argc, VALUE*argv, VALUE self)
{
ENTER(5);
VALUE vexp, prec;
Real* exp = NULL;
Real *x, *y;
ssize_t mp, ma, n;
SIGNED_VALUE int_exp;
double d;
rb_scan_args(argc, argv, "11", &vexp, &prec);
GUARD_OBJ(x, GetVpValue(self, 1));
n = NIL_P(prec) ? (ssize_t)(x->Prec*VpBaseFig()) : NUM2SSIZET(prec);
if (VpIsNaN(x)) {
y = VpCreateRbObject(n, "0#");
RB_GC_GUARD(y->obj);
VpSetNaN(y);
return ToValue(y);
}
retry:
switch (TYPE(vexp)) {
case T_FIXNUM:
break;
case T_BIGNUM:
break;
case T_FLOAT:
d = RFLOAT_VALUE(vexp);
if (d == round(d)) {
if (FIXABLE(d)) {
vexp = LONG2FIX((long)d);
}
else {
vexp = rb_dbl2big(d);
}
goto retry;
}
exp = GetVpValueWithPrec(vexp, DBL_DIG+1, 1);
break;
case T_RATIONAL:
if (is_zero(rb_rational_num(vexp))) {
if (is_positive(vexp)) {
vexp = INT2FIX(0);
goto retry;
}
}
else if (is_one(rb_rational_den(vexp))) {
vexp = rb_rational_num(vexp);
goto retry;
}
exp = GetVpValueWithPrec(vexp, n, 1);
break;
case T_DATA:
if (is_kind_of_BigDecimal(vexp)) {
VALUE zero = INT2FIX(0);
VALUE rounded = BigDecimal_round(1, &zero, vexp);
if (RTEST(BigDecimal_eq(vexp, rounded))) {
vexp = BigDecimal_to_i(vexp);
goto retry;
}
exp = DATA_PTR(vexp);
break;
}
/* fall through */
default:
rb_raise(rb_eTypeError,
"wrong argument type %"PRIsVALUE" (expected scalar Numeric)",
RB_OBJ_CLASSNAME(vexp));
}
if (VpIsZero(x)) {
if (is_negative(vexp)) {
y = VpCreateRbObject(n, "#0");
RB_GC_GUARD(y->obj);
if (VpGetSign(x) < 0) {
if (is_integer(vexp)) {
if (is_even(vexp)) {
/* (-0) ** (-even_integer) -> Infinity */
VpSetPosInf(y);
}
else {
/* (-0) ** (-odd_integer) -> -Infinity */
VpSetNegInf(y);
}
}
else {
/* (-0) ** (-non_integer) -> Infinity */
VpSetPosInf(y);
}
}
else {
/* (+0) ** (-num) -> Infinity */
VpSetPosInf(y);
}
return ToValue(y);
}
else if (is_zero(vexp)) {
return ToValue(VpCreateRbObject(n, "1"));
}
else {
return ToValue(VpCreateRbObject(n, "0"));
}
}
if (is_zero(vexp)) {
return ToValue(VpCreateRbObject(n, "1"));
}
else if (is_one(vexp)) {
return self;
}
if (VpIsInf(x)) {
if (is_negative(vexp)) {
if (VpGetSign(x) < 0) {
if (is_integer(vexp)) {
if (is_even(vexp)) {
/* (-Infinity) ** (-even_integer) -> +0 */
return ToValue(VpCreateRbObject(n, "0"));
}
else {
/* (-Infinity) ** (-odd_integer) -> -0 */
return ToValue(VpCreateRbObject(n, "-0"));
}
}
else {
/* (-Infinity) ** (-non_integer) -> -0 */
return ToValue(VpCreateRbObject(n, "-0"));
}
}
else {
return ToValue(VpCreateRbObject(n, "0"));
}
}
else {
y = VpCreateRbObject(n, "0#");
if (VpGetSign(x) < 0) {
if (is_integer(vexp)) {
if (is_even(vexp)) {
VpSetPosInf(y);
}
else {
VpSetNegInf(y);
}
}
else {
/* TODO: support complex */
rb_raise(rb_eMathDomainError,
"a non-integral exponent for a negative base");
}
}
else {
VpSetPosInf(y);
}
return ToValue(y);
}
}
if (exp != NULL) {
return rmpd_power_by_big_decimal(x, exp, n);
}
else if (RB_TYPE_P(vexp, T_BIGNUM)) {
VALUE abs_value = BigDecimal_abs(self);
if (is_one(abs_value)) {
return ToValue(VpCreateRbObject(n, "1"));
}
else if (RTEST(rb_funcall(abs_value, '<', 1, INT2FIX(1)))) {
if (is_negative(vexp)) {
y = VpCreateRbObject(n, "0#");
if (is_even(vexp)) {
VpSetInf(y, VpGetSign(x));
}
else {
VpSetInf(y, -VpGetSign(x));
}
return ToValue(y);
}
else if (VpGetSign(x) < 0 && is_even(vexp)) {
return ToValue(VpCreateRbObject(n, "-0"));
}
else {
return ToValue(VpCreateRbObject(n, "0"));
}
}
else {
if (is_positive(vexp)) {
y = VpCreateRbObject(n, "0#");
if (is_even(vexp)) {
VpSetInf(y, VpGetSign(x));
}
else {
VpSetInf(y, -VpGetSign(x));
}
return ToValue(y);
}
else if (VpGetSign(x) < 0 && is_even(vexp)) {
return ToValue(VpCreateRbObject(n, "-0"));
}
else {
return ToValue(VpCreateRbObject(n, "0"));
}
}
}
int_exp = FIX2LONG(vexp);
ma = int_exp;
if (ma < 0) ma = -ma;
if (ma == 0) ma = 1;
if (VpIsDef(x)) {
mp = x->Prec * (VpBaseFig() + 1);
GUARD_OBJ(y, VpCreateRbObject(mp * (ma + 1), "0"));
}
else {
GUARD_OBJ(y, VpCreateRbObject(1, "0"));
}
VpPower(y, x, int_exp);
if (!NIL_P(prec) && VpIsDef(y)) {
VpMidRound(y, VpGetRoundMode(), n);
}
return ToValue(y);
}
|
#precs ⇒ Object
precs
Returns an Array of two Integer values.
The first value is the current number of significant digits in the BigDecimal. The second value is the maximum number of significant digits for the BigDecimal.
338 339 340 341 342 343 344 345 346 347 348 349 |
# File 'bigdecimal.c', line 338
static VALUE
BigDecimal_prec(VALUE self)
{
ENTER(1);
Real *p;
VALUE obj;
GUARD_OBJ(p, GetVpValue(self, 1));
obj = rb_assoc_new(INT2NUM(p->Prec*VpBaseFig()),
INT2NUM(p->MaxPrec*VpBaseFig()));
return obj;
}
|
#quo ⇒ Object
For c = self/r: with round operation
1281 1282 1283 1284 1285 1286 1287 1288 1289 1290 1291 1292 1293 1294 1295 1296 1297 1298 1299 |
# File 'bigdecimal.c', line 1281
static VALUE
BigDecimal_div(VALUE self, VALUE r)
/* For c = self/r: with round operation */
{
ENTER(5);
Real *c=NULL, *res=NULL, *div = NULL;
r = BigDecimal_divide(&c, &res, &div, self, r);
if (!NIL_P(r)) return r; /* coerced by other */
SAVE(c); SAVE(res); SAVE(div);
/* a/b = c + r/b */
/* c xxxxx
r 00000yyyyy ==> (y/b)*BASE >= HALF_BASE
*/
/* Round */
if (VpHasVal(div)) { /* frac[0] must be zero for NaN,INF,Zero */
VpInternalRound(c, 0, c->frac[c->Prec-1], (BDIGIT)(VpBaseVal() * (BDIGIT_DBL)res->frac[0] / div->frac[0]));
}
return ToValue(c);
}
|
#remainder ⇒ Object
remainder
1459 1460 1461 1462 1463 1464 1465 1466 1467 |
# File 'bigdecimal.c', line 1459
static VALUE
BigDecimal_remainder(VALUE self, VALUE r) /* remainder */
{
VALUE f;
Real *d, *rv = 0;
f = BigDecimal_divremain(self, r, &d, &rv);
if (!NIL_P(f)) return f;
return ToValue(rv);
}
|
#round(*args) ⇒ Object
round(n, mode)
Round to the nearest integer (by default), returning the result as a BigDecimal.
BigDecimal(‘3.14159’).round #=> 3 BigDecimal(‘8.7’).round #=> 9 BigDecimal(‘-9.9’).round #=> -10
If n is specified and positive, the fractional part of the result has no more than that many digits.
If n is specified and negative, at least that many digits to the left of the decimal point will be 0 in the result.
BigDecimal(‘3.14159’).round(3) #=> 3.142 BigDecimal(‘13345.234’).round(-2) #=> 13300.0
The value of the optional mode argument can be used to determine how rounding is performed; see BigDecimal.mode.
1703 1704 1705 1706 1707 1708 1709 1710 1711 1712 1713 1714 1715 1716 1717 1718 1719 1720 1721 1722 1723 1724 1725 1726 1727 1728 1729 1730 1731 1732 1733 1734 1735 1736 1737 1738 1739 1740 1741 1742 |
# File 'bigdecimal.c', line 1703
static VALUE
BigDecimal_round(int argc, VALUE *argv, VALUE self)
{
ENTER(5);
Real *c, *a;
int iLoc = 0;
VALUE vLoc;
VALUE vRound;
size_t mx, pl;
unsigned short sw = VpGetRoundMode();
switch (rb_scan_args(argc, argv, "02", &vLoc, &vRound)) {
case 0:
iLoc = 0;
break;
case 1:
Check_Type(vLoc, T_FIXNUM);
iLoc = FIX2INT(vLoc);
break;
case 2:
Check_Type(vLoc, T_FIXNUM);
iLoc = FIX2INT(vLoc);
sw = check_rounding_mode(vRound);
break;
default:
break;
}
pl = VpSetPrecLimit(0);
GUARD_OBJ(a, GetVpValue(self, 1));
mx = a->Prec * (VpBaseFig() + 1);
GUARD_OBJ(c, VpCreateRbObject(mx, "0"));
VpSetPrecLimit(pl);
VpActiveRound(c, a, sw, iLoc);
if (argc == 0) {
return BigDecimal_to_i(ToValue(c));
}
return ToValue(c);
}
|
#sign ⇒ Object
Returns the sign of the value.
Returns a positive value if > 0, a negative value if < 0, and a zero if == 0.
The specific value returned indicates the type and sign of the BigDecimal, as follows:
- BigDecimal::SIGN_NaN
-
value is Not a Number
- BigDecimal::SIGN_POSITIVE_ZERO
-
value is +0
- BigDecimal::SIGN_NEGATIVE_ZERO
-
value is -0
- BigDecimal::SIGN_POSITIVE_INFINITE
-
value is +Infinity
- BigDecimal::SIGN_NEGATIVE_INFINITE
-
value is -Infinity
- BigDecimal::SIGN_POSITIVE_FINITE
-
value is positive
- BigDecimal::SIGN_NEGATIVE_FINITE
-
value is negative
2654 2655 2656 2657 2658 2659 |
# File 'bigdecimal.c', line 2654
static VALUE
BigDecimal_sign(VALUE self)
{ /* sign */
int s = GetVpValue(self, 1)->sign;
return INT2FIX(s);
}
|
#split ⇒ Object
Splits a BigDecimal number into four parts, returned as an array of values.
The first value represents the sign of the BigDecimal, and is -1 or 1, or 0 if the BigDecimal is Not a Number.
The second value is a string representing the significant digits of the BigDecimal, with no leading zeros.
The third value is the base used for arithmetic (currently always 10) as an Integer.
The fourth value is an Integer exponent.
If the BigDecimal can be represented as 0.xxxxxx*10**n, then xxxxxx is the string of significant digits with no leading zeros, and n is the exponent.
From these values, you can translate a BigDecimal to a float as follows:
sign, significant_digits, base, exponent = a.split
f = sign * "0.#{significant_digits}".to_f * (base ** exponent)
(Note that the to_f method is provided as a more convenient way to translate a BigDecimal to a Float.)
2023 2024 2025 2026 2027 2028 2029 2030 2031 2032 2033 2034 2035 2036 2037 2038 2039 2040 2041 2042 2043 2044 2045 2046 2047 2048 2049 2050 2051 2052 2053 |
# File 'bigdecimal.c', line 2023
static VALUE
BigDecimal_split(VALUE self)
{
ENTER(5);
Real *vp;
VALUE obj,str;
ssize_t e, s;
char *psz1;
GUARD_OBJ(vp, GetVpValue(self, 1));
str = rb_str_new(0, VpNumOfChars(vp, "E"));
psz1 = RSTRING_PTR(str);
VpSzMantissa(vp, psz1);
s = 1;
if(psz1[0] == '-') {
size_t len = strlen(psz1 + 1);
memmove(psz1, psz1 + 1, len);
psz1[len] = '\0';
s = -1;
}
if (psz1[0] == 'N') s = 0; /* NaN */
e = VpExponent10(vp);
obj = rb_ary_new2(4);
rb_ary_push(obj, INT2FIX(s));
rb_ary_push(obj, str);
rb_str_resize(str, strlen(psz1));
rb_ary_push(obj, INT2FIX(10));
rb_ary_push(obj, INT2NUM(e));
return obj;
}
|
#sqrt(nFig) ⇒ Object
sqrt(n)
Returns the square root of the value.
Result has at least n significant digits.
1648 1649 1650 1651 1652 1653 1654 1655 1656 1657 1658 1659 1660 1661 1662 1663 |
# File 'bigdecimal.c', line 1648
static VALUE
BigDecimal_sqrt(VALUE self, VALUE nFig)
{
ENTER(5);
Real *c, *a;
size_t mx, n;
GUARD_OBJ(a, GetVpValue(self, 1));
mx = a->Prec * (VpBaseFig() + 1);
n = GetPositiveInt(nFig) + VpDblFig() + BASE_FIG;
if (mx <= n) mx = n;
GUARD_OBJ(c, VpCreateRbObject(mx, "0"));
VpSqrt(c, a);
return ToValue(c);
}
|
#sub(b, n) ⇒ Object
sub(value, digits) -> bigdecimal
Subtract the specified value.
e.g.
c = a.sub(b,n)
- digits
-
If specified and less than the number of significant digits of the result, the result is rounded to that number of digits, according to BigDecimal.mode.
1586 1587 1588 1589 1590 1591 1592 1593 1594 1595 1596 1597 1598 1599 1600 1601 |
# File 'bigdecimal.c', line 1586
static VALUE
BigDecimal_sub2(VALUE self, VALUE b, VALUE n)
{
ENTER(2);
Real *cv;
SIGNED_VALUE mx = GetPositiveInt(n);
if (mx == 0) return BigDecimal_sub(self, b);
else {
size_t pl = VpSetPrecLimit(0);
VALUE c = BigDecimal_sub(self, b);
VpSetPrecLimit(pl);
GUARD_OBJ(cv, GetVpValue(c, 1));
VpLeftRound(cv, VpGetRoundMode(), mx);
return ToValue(cv);
}
}
|
#to_d ⇒ Object
call-seq:
a.to_d -> bigdecimal
Returns self.
97 98 99 |
# File 'lib/bigdecimal/util.rb', line 97 def to_d self end |
#to_digits ⇒ Object
call-seq:
a.to_digits -> string
Converts a BigDecimal to a String of the form “nnnnnn.mmm”. This method is deprecated; use BigDecimal#to_s(“F”) instead.
require 'bigdecimal'
require 'bigdecimal/util'
d = BigDecimal.new("3.14")
d.to_digits
# => "3.14"
83 84 85 86 87 88 89 90 91 |
# File 'lib/bigdecimal/util.rb', line 83 def to_digits if self.nan? || self.infinite? || self.zero? self.to_s else i = self.to_i.to_s _,f,_,z = self.frac.split i + "." + ("0"*(-z)) + f end end |
#to_f ⇒ Object
Returns a new Float object having approximately the same value as the BigDecimal number. Normal accuracy limits and built-in errors of binary Float arithmetic apply.
731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 |
# File 'bigdecimal.c', line 731
static VALUE
BigDecimal_to_f(VALUE self)
{
ENTER(1);
Real *p;
double d;
SIGNED_VALUE e;
char *buf;
volatile VALUE str;
GUARD_OBJ(p, GetVpValue(self, 1));
if (VpVtoD(&d, &e, p) != 1)
return rb_float_new(d);
if (e > (SIGNED_VALUE)(DBL_MAX_10_EXP+BASE_FIG))
goto overflow;
if (e < (SIGNED_VALUE)(DBL_MIN_10_EXP-BASE_FIG))
goto underflow;
str = rb_str_new(0, VpNumOfChars(p, "E"));
buf = RSTRING_PTR(str);
VpToString(p, buf, 0, 0);
errno = 0;
d = strtod(buf, 0);
if (errno == ERANGE) {
if (d == 0.0) goto underflow;
if (fabs(d) >= HUGE_VAL) goto overflow;
}
return rb_float_new(d);
overflow:
VpException(VP_EXCEPTION_OVERFLOW, "BigDecimal to Float conversion", 0);
if (p->sign >= 0)
return rb_float_new(VpGetDoublePosInf());
else
return rb_float_new(VpGetDoubleNegInf());
underflow:
VpException(VP_EXCEPTION_UNDERFLOW, "BigDecimal to Float conversion", 0);
if (p->sign >= 0)
return rb_float_new(0.0);
else
return rb_float_new(-0.0);
}
|
#to_i ⇒ Object
Returns the value as an integer (Fixnum or Bignum).
If the BigNumber is infinity or NaN, raises FloatDomainError.
684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 |
# File 'bigdecimal.c', line 684
static VALUE
BigDecimal_to_i(VALUE self)
{
ENTER(5);
ssize_t e, nf;
Real *p;
GUARD_OBJ(p, GetVpValue(self, 1));
BigDecimal_check_num(p);
e = VpExponent10(p);
if (e <= 0) return INT2FIX(0);
nf = VpBaseFig();
if (e <= nf) {
return LONG2NUM((long)(VpGetSign(p) * (BDIGIT_DBL_SIGNED)p->frac[0]));
}
else {
VALUE a = BigDecimal_split(self);
VALUE digits = RARRAY_AREF(a, 1);
VALUE numerator = rb_funcall(digits, rb_intern("to_i"), 0);
VALUE ret;
ssize_t dpower = e - (ssize_t)RSTRING_LEN(digits);
if (VpGetSign(p) < 0) {
numerator = rb_funcall(numerator, '*', 1, INT2FIX(-1));
}
if (dpower < 0) {
ret = rb_funcall(numerator, rb_intern("div"), 1,
rb_funcall(INT2FIX(10), rb_intern("**"), 1,
INT2FIX(-dpower)));
}
else {
ret = rb_funcall(numerator, '*', 1,
rb_funcall(INT2FIX(10), rb_intern("**"), 1,
INT2FIX(dpower)));
}
if (RB_TYPE_P(ret, T_FLOAT)) {
rb_raise(rb_eFloatDomainError, "Infinity");
}
return ret;
}
}
|
#to_int ⇒ Object
Returns the value as an integer (Fixnum or Bignum).
If the BigNumber is infinity or NaN, raises FloatDomainError.
684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 |
# File 'bigdecimal.c', line 684
static VALUE
BigDecimal_to_i(VALUE self)
{
ENTER(5);
ssize_t e, nf;
Real *p;
GUARD_OBJ(p, GetVpValue(self, 1));
BigDecimal_check_num(p);
e = VpExponent10(p);
if (e <= 0) return INT2FIX(0);
nf = VpBaseFig();
if (e <= nf) {
return LONG2NUM((long)(VpGetSign(p) * (BDIGIT_DBL_SIGNED)p->frac[0]));
}
else {
VALUE a = BigDecimal_split(self);
VALUE digits = RARRAY_AREF(a, 1);
VALUE numerator = rb_funcall(digits, rb_intern("to_i"), 0);
VALUE ret;
ssize_t dpower = e - (ssize_t)RSTRING_LEN(digits);
if (VpGetSign(p) < 0) {
numerator = rb_funcall(numerator, '*', 1, INT2FIX(-1));
}
if (dpower < 0) {
ret = rb_funcall(numerator, rb_intern("div"), 1,
rb_funcall(INT2FIX(10), rb_intern("**"), 1,
INT2FIX(-dpower)));
}
else {
ret = rb_funcall(numerator, '*', 1,
rb_funcall(INT2FIX(10), rb_intern("**"), 1,
INT2FIX(dpower)));
}
if (RB_TYPE_P(ret, T_FLOAT)) {
rb_raise(rb_eFloatDomainError, "Infinity");
}
return ret;
}
}
|
#to_r ⇒ Object
Converts a BigDecimal to a Rational.
778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 |
# File 'bigdecimal.c', line 778
static VALUE
BigDecimal_to_r(VALUE self)
{
Real *p;
ssize_t sign, power, denomi_power;
VALUE a, digits, numerator;
p = GetVpValue(self, 1);
BigDecimal_check_num(p);
sign = VpGetSign(p);
power = VpExponent10(p);
a = BigDecimal_split(self);
digits = RARRAY_AREF(a, 1);
denomi_power = power - RSTRING_LEN(digits);
numerator = rb_funcall(digits, rb_intern("to_i"), 0);
if (sign < 0) {
numerator = rb_funcall(numerator, '*', 1, INT2FIX(-1));
}
if (denomi_power < 0) {
return rb_Rational(numerator,
rb_funcall(INT2FIX(10), rb_intern("**"), 1,
INT2FIX(-denomi_power)));
}
else {
return rb_Rational1(rb_funcall(numerator, '*', 1,
rb_funcall(INT2FIX(10), rb_intern("**"), 1,
INT2FIX(denomi_power))));
}
}
|
#to_s(*args) ⇒ Object
to_s(s)
Converts the value to a string.
The default format looks like 0.xxxxEnn.
The optional parameter s consists of either an integer; or an optional ‘+’ or ‘ ’, followed by an optional number, followed by an optional ‘E’ or ‘F’.
If there is a ‘+’ at the start of s, positive values are returned with a leading ‘+’.
A space at the start of s returns positive values with a leading space.
If s contains a number, a space is inserted after each group of that many fractional digits.
If s ends with an ‘E’, engineering notation (0.xxxxEnn) is used.
If s ends with an ‘F’, conventional floating point notation is used.
Examples:
BigDecimal.new('-123.45678901234567890').to_s('5F')
#=> '-123.45678 90123 45678 9'
BigDecimal.new('123.45678901234567890').to_s('+8F')
#=> '+123.45678901 23456789'
BigDecimal.new('123.45678901234567890').to_s(' F')
#=> ' 123.4567890123456789'
1932 1933 1934 1935 1936 1937 1938 1939 1940 1941 1942 1943 1944 1945 1946 1947 1948 1949 1950 1951 1952 1953 1954 1955 1956 1957 1958 1959 1960 1961 1962 1963 1964 1965 1966 1967 1968 1969 1970 1971 1972 1973 1974 1975 1976 1977 1978 1979 1980 1981 1982 1983 1984 1985 1986 1987 1988 1989 1990 1991 1992 1993 1994 1995 1996 1997 |
# File 'bigdecimal.c', line 1932
static VALUE
BigDecimal_to_s(int argc, VALUE *argv, VALUE self)
{
ENTER(5);
int fmt = 0; /* 0:E format */
int fPlus = 0; /* =0:default,=1: set ' ' before digits ,set '+' before digits. */
Real *vp;
volatile VALUE str;
char *psz;
char ch;
size_t nc, mc = 0;
VALUE f;
GUARD_OBJ(vp, GetVpValue(self, 1));
if (rb_scan_args(argc, argv, "01", &f) == 1) {
if (RB_TYPE_P(f, T_STRING)) {
SafeStringValue(f);
psz = RSTRING_PTR(f);
if (*psz == ' ') {
fPlus = 1;
psz++;
}
else if (*psz == '+') {
fPlus = 2;
psz++;
}
while ((ch = *psz++) != 0) {
if (ISSPACE(ch)) {
continue;
}
if (!ISDIGIT(ch)) {
if (ch == 'F' || ch == 'f') {
fmt = 1; /* F format */
}
break;
}
mc = mc*10 + ch - '0';
}
}
else {
mc = (size_t)GetPositiveInt(f);
}
}
if (fmt) {
nc = VpNumOfChars(vp, "F");
}
else {
nc = VpNumOfChars(vp, "E");
}
if (mc > 0) {
nc += (nc + mc - 1) / mc + 1;
}
str = rb_str_new(0, nc);
psz = RSTRING_PTR(str);
if (fmt) {
VpToFString(vp, psz, mc, fPlus);
}
else {
VpToString (vp, psz, mc, fPlus);
}
rb_str_resize(str, strlen(psz));
return str;
}
|
#truncate(*args) ⇒ Object
truncate(n)
Truncate to the nearest integer (by default), returning the result as a BigDecimal.
BigDecimal(‘3.14159’).truncate #=> 3 BigDecimal(‘8.7’).truncate #=> 8 BigDecimal(‘-9.9’).truncate #=> -9
If n is specified and positive, the fractional part of the result has no more than that many digits.
If n is specified and negative, at least that many digits to the left of the decimal point will be 0 in the result.
BigDecimal(‘3.14159’).truncate(3) #=> 3.141 BigDecimal(‘13345.234’).truncate(-2) #=> 13300.0
1763 1764 1765 1766 1767 1768 1769 1770 1771 1772 1773 1774 1775 1776 1777 1778 1779 1780 1781 1782 1783 1784 1785 1786 1787 1788 1789 |
# File 'bigdecimal.c', line 1763
static VALUE
BigDecimal_truncate(int argc, VALUE *argv, VALUE self)
{
ENTER(5);
Real *c, *a;
int iLoc;
VALUE vLoc;
size_t mx, pl = VpSetPrecLimit(0);
if (rb_scan_args(argc, argv, "01", &vLoc) == 0) {
iLoc = 0;
}
else {
Check_Type(vLoc, T_FIXNUM);
iLoc = FIX2INT(vLoc);
}
GUARD_OBJ(a, GetVpValue(self, 1));
mx = a->Prec * (VpBaseFig() + 1);
GUARD_OBJ(c, VpCreateRbObject(mx, "0"));
VpSetPrecLimit(pl);
VpActiveRound(c, a, VP_ROUND_DOWN, iLoc); /* 0: truncate */
if (argc == 0) {
return BigDecimal_to_i(ToValue(c));
}
return ToValue(c);
}
|
#zero? ⇒ Boolean
Returns True if the value is zero.
1074 1075 1076 1077 1078 1079 |
# File 'bigdecimal.c', line 1074
static VALUE
BigDecimal_zero(VALUE self)
{
Real *a = GetVpValue(self, 1);
return VpIsZero(a) ? Qtrue : Qfalse;
}
|