Module: Jacobian
- Included in:
- Newton
- Defined in:
- lib/bigdecimal/jacobian.rb
Overview
frozen_string_literal: false
require ‘bigdecimal/jacobian’
Provides methods to compute the Jacobian matrix of a set of equations at a point x. In the methods below:
f is an Object which is used to compute the Jacobian matrix of the equations. It must provide the following methods:
- f.values(x)
-
returns the values of all functions at x
- f.zero
-
returns 0.0
- f.one
-
returns 1.0
- f.two
-
returns 2.0
- f.ten
-
returns 10.0
- f.eps
-
returns the convergence criterion (epsilon value) used to determine whether two values are considered equal. If |a-b| < epsilon, the two values are considered equal.
x is the point at which to compute the Jacobian.
fx is f.values(x).
Class Method Summary collapse
- .dfdxi(f, fx, x, i) ⇒ Object
-
.isEqual(a, b, zero = 0.0, e = 1.0e-8) ⇒ Object
Determines the equality of two numbers by comparing to zero, or using the epsilon value.
-
.jacobian(f, fx, x) ⇒ Object
Computes the Jacobian of f at x.
Class Method Details
.dfdxi(f, fx, x, i) ⇒ Object
45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 |
# File 'lib/bigdecimal/jacobian.rb', line 45 def dfdxi(f,fx,x,i) nRetry = 0 n = x.size xSave = x[i] ok = 0 ratio = f.ten*f.ten*f.ten dx = x[i].abs/ratio dx = fx[i].abs/ratio if isEqual(dx,f.zero,f.zero,f.eps) dx = f.one/f.ten if isEqual(dx,f.zero,f.zero,f.eps) until ok>0 do deriv = [] nRetry += 1 if nRetry > 100 raise "Singular Jacobian matrix. No change at x[" + i.to_s + "]" end dx = dx*f.two x[i] += dx fxNew = f.values(x) for j in 0...n do if !isEqual(fxNew[j],fx[j],f.zero,f.eps) then ok += 1 deriv <<= (fxNew[j]-fx[j])/dx else deriv <<= f.zero end end x[i] = xSave end deriv end |
.isEqual(a, b, zero = 0.0, e = 1.0e-8) ⇒ Object
Determines the equality of two numbers by comparing to zero, or using the epsilon value
28 29 30 31 32 33 34 35 36 37 38 39 40 |
# File 'lib/bigdecimal/jacobian.rb', line 28 def isEqual(a,b,zero=0.0,e=1.0e-8) aa = a.abs bb = b.abs if aa == zero && bb == zero then true else if ((a-b)/(aa+bb)).abs < e then true else false end end end |
.jacobian(f, fx, x) ⇒ Object
Computes the Jacobian of f at x. fx is the value of f at x.
77 78 79 80 81 82 83 84 85 86 87 |
# File 'lib/bigdecimal/jacobian.rb', line 77 def jacobian(f,fx,x) n = x.size dfdx = Array.new(n*n) for i in 0...n do df = dfdxi(f,fx,x,i) for j in 0...n do dfdx[j*n+i] = df[j] end end dfdx end |